# Network-Wide Throughput Optimization for Highway Vehicle-To-Vehicle Communications

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Related Work

## 3. System Model

## 4. Analysis

**Theorem**

**1.**

**Proof.**

#### Throughput Optimization

## 5. Numerical Results

#### Throughput Evaluation

## 6. Conclusions and Future Work

## Author Contributions

## Funding

## Conflicts of Interest

## References

- The World Health Report 2015—Reducing Risks, Promoting Healthy Life. Available online: http://www.who.int/whr/2002/chapter4/en/index7.html (accessed on 30 June 2017).
- Review of NHTSA Proposal to Mandate V2V Communication for Safety. Available online: https://www.cargroup.org/publication/review-nhtsa-proposal-mandate-v2v-communication-safety/ (accessed on 5 February 2017).
- Kenney, J.B. Dedicated Short-Range Communications (DSRC) Standards in the United States. Proc. IEEE
**2011**, 99, 1162–1182. [Google Scholar] [CrossRef] - Dedicated Short Range Communications (DSRC) Message Set Dictionary. Available online: http://standards.sae.org/j2735_201603/ (accessed on 20 October 2018).
- Hadded, M.; Muhlethaler, P.; Laouiti, A.; Zagrouba, R.; Saidane, L.A. TDMA-Based MAC Protocols for Vehicular Ad Hoc Networks: A Survey, Qualitative Analysis, and Open Research Issues. IEEE Commun. Surv. Tutor.
**2015**, 17, 2461–2492. [Google Scholar] [CrossRef][Green Version] - Abd El-Gawad, M.A.; Elsharief, M.; Kim, H. A cooperative V2X MAC protocol for vehicular networks. EURASIP J. Wirel. Commun. Netw.
**2019**, 2019, 65. [Google Scholar] [CrossRef][Green Version] - Luong, H.P.; Panda, M.; Vu, H.L.; Vo, B.Q. Beacon Rate Optimization for Vehicular Safety Applications in Highway Scenarios. IEEE Trans. Veh. Technol.
**2018**, 67, 524–536. [Google Scholar] [CrossRef] - Sommer, C.; Joerer, S.; Segata, M.; Tonguz, O.K.; Cigno, R.L.; Dressler, F. How Shadowing Hurts Vehicular Communications and How Dynamic Beaconing Can Help. IEEE Trans. Mob. Comput.
**2015**, 14, 1411–1421. [Google Scholar] [CrossRef] - Lyamin, N.; Vinel, A.; Smely, D.; Bellalta, B. ETSI DCC: Decentralized Congestion Control in C-ITS. IEEE Commun. Mag.
**2018**, 56, 112–118. [Google Scholar] [CrossRef] - Bansal, G.; Kenney, J.B.; Rohrs, C.E. LIMERIC: A Linear Adaptive Message Rate Algorithm for DSRC Congestion Control. IEEE Trans. Veh. Technol.
**2013**, 62, 4182–4197. [Google Scholar] [CrossRef] - ElSawy, H.; Sultan-Salem, A.; Alouini, M.S.; Win, M.Z. Modeling and analysis of cellular networks using stochastic geometry: A tutorial. IEEE Commun. Surv. Tutor.
**2017**, 19, 167–203. [Google Scholar] [CrossRef] - ElSawy, H.; Hossain, E.; Haenggi, M. Stochastic Geometry for Modeling, Analysis, and Design of Multi-Tier and Cognitive Cellular Wireless Networks: A Survey. IEEE Commun. Surv. Tutor.
**2013**, 15, 996–1019. [Google Scholar] [CrossRef] - Nguyen, T.V.; Baccelli, F.; Zhu, K.; Subramanian, S.; Wu, X. A performance analysis of CSMA based broadcast protocol in VANETs. In Proceedings of the 2013 Proceedings IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 2805–2813. [Google Scholar] [CrossRef]
- Blaszczyszyn, B.; Mühlethaler, P.; Toor, Y. Maximizing throughput of linear vehicular Ad-hoc NETworks (VANETs)—A stochastic approach. In Proceedings of the 2009 European Wireless Conference, Aalborg, Denmark, 17–20 May 2009; pp. 32–36. [Google Scholar] [CrossRef]
- Zanella, A.; Bazzi, A.; Pasolini, G.; Masini, B.M. On the Impact of Routing Strategies on the Interference of Ad Hoc Wireless Networks. IEEE Trans. Commun.
**2013**, 61, 4322–4333. [Google Scholar] [CrossRef] - Farooq, M.J.; ElSawy, H.; Alouini, M.S. A Stochastic Geometry Model for Multi-Hop Highway Vehicular Communication. IEEE Trans. Wirel. Commun.
**2016**, 15, 2276–2291. [Google Scholar] [CrossRef] - Steinmetz, E.; Wildemeersch, M.; Quek, T.Q.; Wymeersch, H. A Stochastic Geometry Model for Vehicular Communication near Intersections. In Proceedings of the 2015 IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, 6–10 December 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Tong, Z.; Lu, H.; Haenggi, M.; Poellabauer, C. A Stochastic Geometry Approach to the Modeling of DSRC for Vehicular Safety Communication. IEEE Trans. Intell. Transp. Syst.
**2016**, 17, 1448–1458. [Google Scholar] [CrossRef] - Zhang, W.; Chen, Y.; Yang, Y.; Wang, X.; Zhang, Y.; Hong, X.; Mao, G. Multi-Hop Connectivity Probability in Infrastructure-Based Vehicular Networks. IEEE J. Sel. Areas Commun.
**2012**, 30, 740–747. [Google Scholar] [CrossRef] - Chetlur, V.V.; Dhillon, H.S. Coverage Analysis of a Vehicular Network Modeled as Cox Process Driven by Poisson Line Process. IEEE Trans. Wirel. Commun.
**2018**, 17, 4401–4416. [Google Scholar] [CrossRef][Green Version] - Bazzi, A.; Zanella, A.; Cecchini, G.; Masini, B.M. Analytical Investigation of Two Benchmark Resource Allocation Algorithms for LTE-V2V. IEEE Trans. Veh. Technol.
**2019**, 68, 5904–5916. [Google Scholar] [CrossRef] - Choi, C.; Baccelli, F. An Analytical Framework for Coverage in Cellular Networks Leveraging Vehicles. IEEE Trans. Commun.
**2018**, 66, 4950–4964. [Google Scholar] [CrossRef] - Martín-Vega, F.J.; Soret, B.; Aguayo-Torres, M.C.; Kovács, I.Z.; Gómez, G. Geolocation-Based Access for Vehicular Communications: Analysis and Optimization via Stochastic Geometry. IEEE Trans. Veh. Technol.
**2018**, 67, 3069–3084. [Google Scholar] [CrossRef] - Wang, Y.; Venugopal, K.; Molisch, A.F.; Heath, R.W. MmWave Vehicle-to-Infrastructure Communication: Analysis of Urban Microcellular Networks. IEEE Trans. Veh. Technol.
**2018**, 67, 7086–7100. [Google Scholar] [CrossRef][Green Version] - Haenggi, M. The meta-distribution of the SIR in Poisson bipolar and cellular networks. IEEE Trans. Wirel. Commun.
**2016**, 15, 2577–2589. [Google Scholar] [CrossRef] - Giang, A.T.; Busson, A.; Di Renzo, M. Modeling and optimization of CSMA/CA in VANET. Ann. Oper. Res.
**2016**, 239, 553–568. [Google Scholar] [CrossRef] - Eichler, S. Performance Evaluation of the IEEE 802.11p WAVE Communication Standard. In Proceedings of the 2007 IEEE 66th Vehicular Technology Conference, Baltimore, MD, USA, 30 September–3 October 2007; pp. 2199–2203. [Google Scholar] [CrossRef]
- Gil-Pelaez, J. Note on the inversion theorem. Biometrika
**1951**, 38, 481–482. [Google Scholar] [CrossRef]

**Figure 2.**The meta-distribution of transmission success probability (TSP) at different values of $\theta $, $\eta $ and p. (

**a**) $\theta =0$ dB, $\eta =3$ and $p=0.5$; (

**b**) $\theta =0$ dB and $\eta =3$; (

**c**) $\eta =3$; and $p=0.5$; (

**d**) $\theta =0$ dB and $p=0.5$.

**Figure 3.**Mean and variance of the TSP. (

**a**) $\eta =3,\theta =[-5,0,10]$ dB; (

**b**) $\theta =0$ dB, $\eta =[2,3,4]$.

**Figure 4.**Mean and variance of the throughput, T. (

**a**) $\eta =3$, p = 0.2; (

**b**) $\eta =3$, p = 0.5; (

**c**) $\eta =3$, p = 1.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Abd El-Gawad, M.A.; ElSawy, H.; Sakr, A.H.; Kim, H.
Network-Wide Throughput Optimization for Highway Vehicle-To-Vehicle Communications. *Electronics* **2019**, *8*, 830.
https://doi.org/10.3390/electronics8080830

**AMA Style**

Abd El-Gawad MA, ElSawy H, Sakr AH, Kim H.
Network-Wide Throughput Optimization for Highway Vehicle-To-Vehicle Communications. *Electronics*. 2019; 8(8):830.
https://doi.org/10.3390/electronics8080830

**Chicago/Turabian Style**

Abd El-Gawad, Mohamed A., Hesham ElSawy, Ahmed Hamdi Sakr, and HyungWon Kim.
2019. "Network-Wide Throughput Optimization for Highway Vehicle-To-Vehicle Communications" *Electronics* 8, no. 8: 830.
https://doi.org/10.3390/electronics8080830