Radiation Tolerant Electronics
1. Introduction
2. The Present Issue
3. Future
Acknowledgments
References
- Wang, T.; Wan, X.; Jin, H.; Li, H.; Sun, Y.; Liang, R.; Xu, J.; Zheng, L. Optimization of the Cell Structure for Radiation-Hardened Power MOSFETs. Electronics 2019, 8, 598. [Google Scholar] [CrossRef]
- Liu, M.; Lu, W.; Yu, X.; Wang, X.; Li, X.; Yao, S.; Guo, Q. Mechanism of Degradation Rate on the Irradiated Double-Polysilicon Self-Aligned Bipolar Transistor. Electronics 2019, 8, 657. [Google Scholar] [CrossRef]
- Jeong, K.; Ro, D.; Lee, G.; Kang, M.; Lee, H.-M. A Radiation-Hardened Instrumentation Amplifier for Sensor Readout Integrated Circuits in Nuclear Fusion Applications. Electronics 2018, 7, 429. [Google Scholar] [CrossRef]
- Budroweit, J.; Jaksch, M.P.; Sznajder, M. Proton Induced Single Event Effect Characterization on a Highly Integrated RF-Transceiver. Electronics 2019, 8, 519. [Google Scholar] [CrossRef]
- Van Bockel, B.; Prinzie, J.; Leroux, P. Radiation Assessment of a 15.6ps Single-Shot Time-to-Digital Converter in Terms of TID. Electronics 2019, 8, 558. [Google Scholar] [CrossRef]
- Andreou, C.M.; González-Castaño, D.M.; Gerardin, S.; Bagatin, M.; Gómez Rodriguez, F.; Paccagnella, A.; Prokofiev, A.V.; Javanainen, A.; Virtanen, A.; Liberali, V.; et al. Low-Power, Subthreshold Reference Circuits for the Space Environment: Evaluated with γ-rays, X-rays, Protons and Heavy Ions. Electronics 2019, 8, 562. [Google Scholar] [CrossRef]
- Prinzie, J.; Smedt, V.D. Single Event Transients in CMOS Ring Oscillators. Electronics 2019, 8, 618. [Google Scholar] [CrossRef]
- Díez-Acereda, V.L.; Khemchandani, S.; del Pino, J.; Mateos-Angulo, S. RHBD Techniques to Mitigate SEU and SET in CMOS Frequency Synthesizers. Electronics 2019, 8, 690. [Google Scholar] [Green Version]
- Muñoz-Quijada, M.; Sanchez-Barea, S.; Vela-Calderon, D.; Guzman-Miranda, H. Fine-Grain Circuit Hardening Through VHDL Datatype Substitution. Electronics 2019, 8, 24. [Google Scholar] [CrossRef]
- Prinzie, J.; Appels, K.; Kulis, S. Optimal Physical Implementation of Radiation Tolerant High-Speed Digital Integrated Circuits in Deep-Submicron Technologies. Electronics 2019, 8, 432. [Google Scholar] [CrossRef]
- Cai, C.; Fan, X.; Liu, J.; Li, D.; Liu, T.; Ke, L.; Zhao, P.; He, Z. Heavy-Ion Induced Single Event Upsets in Advanced 65 nm Radiation Hardened FPGAs. Electronics 2019, 8, 323. [Google Scholar] [CrossRef]
- Banteywalu, S.; Khan, B.; De Smedt, V.; Leroux, P. A Novel Modular Radiation Hardening Approach Applied to a Synchronous Buck Converter. Electronics 2019, 8, 513. [Google Scholar] [CrossRef]
- Reyneri, L.M.M.; Serrano-Cases, A.; Morilla, Y.; Cuenca-Asensi, S.; Martínez-Álvarez, A. A Compact Model to Evaluate the Effects of High Level C++ Code Hardening in Radiation Environments. Electronics 2019, 8, 653. [Google Scholar] [CrossRef]
- Martin, H.; Martin-Holgado, P.; Morilla, Y.; Entrena, L.; San-Millan, E. Total Ionizing Dose Effects on a Delay-Based Physical Unclonable Function Implemented in FPGAs. Electronics 2018, 7, 163. [Google Scholar] [CrossRef]
- Aranda, L.A.; Reviriego, P.; Maestro, J.A. Protecting Image Processing Pipelines against Configuration Memory Errors in SRAM-Based FPGAs. Electronics 2018, 7, 322. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leroux, P. Radiation Tolerant Electronics. Electronics 2019, 8, 730. https://doi.org/10.3390/electronics8070730
Leroux P. Radiation Tolerant Electronics. Electronics. 2019; 8(7):730. https://doi.org/10.3390/electronics8070730
Chicago/Turabian StyleLeroux, Paul. 2019. "Radiation Tolerant Electronics" Electronics 8, no. 7: 730. https://doi.org/10.3390/electronics8070730
APA StyleLeroux, P. (2019). Radiation Tolerant Electronics. Electronics, 8(7), 730. https://doi.org/10.3390/electronics8070730