Reduced Complexity BER Calculations in Large Scale Spatial Multiplexing Multi-User MIMO Orientations in Frequency Selective Fading Environments
Abstract
:1. Introduction
2. MIMO Spatial Multiplexing Transceiver Model
3. BER Calculation in Frequency Selective Fading MIMO Orientations
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Paulraj, A.J.; Gore, D.A.; Nabar, R.U.; Bölcskei, H. An overview of MIMO communications—A key to gigabit wireless. Proc. IEEE 2004, 92, 198–218. [Google Scholar] [CrossRef]
- Stuber, G.L.; Barry, J.R.; McLaughlin, S.W.; Li, Y.; Ingram, M.A.; Pratt, T.G. Broadband MlMO-OFDM wireless communications. Proc. IEEE 2004, 92, 271–294. [Google Scholar] [CrossRef]
- Choi, W.; Andrews, J. Spatial multiplexing in cellular MIMO-CDMA systems with linear receivers: Outage probability and capacity. IEEE Trans. Wirel. Commun. 2007, 6, 2612–2621. [Google Scholar] [CrossRef]
- Efthymoglou, G.P.; Piboongungon, T.; Aalo, V.A. Performance of DS-CDMA receivers with MRC in Nakagami-m fading channels with arbitrary fading parameters. IEEE Trans. Veh. Tech. 2006, 55, 104–114. [Google Scholar] [CrossRef]
- Lozano, A.; Jindal, N. Transmit diversity vs. spatial multiplexing in modern MIMO systems. IEEE Trans. Wirel. Commun. 2010, 9, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Basnayaka, D.A.; Haas, H. MIMO interference channel between spatial multiplexing and spatial modulation. IEEE Trans. Commun. 2016, 6, 3369–3381. [Google Scholar] [CrossRef]
- Al-Askery, A.J.; Tsimenidis, C.C.; Boussakta, S.; Chambers, J.A. Performance analysis of coded massive MIMO-OFDM systems using effective matrix inversion. IEEE Trans. Commun. 2017, 65, 5244–5256. [Google Scholar] [CrossRef]
- Sacramento, A.L.; Hamouda, W. Multiuser decorrelator detectors in MIMO CDMA systems over Nakagami fading channels. IEEE Trans. Wirel. Commun. 2009, 8, 1944–1952. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; You, M.; Lei, M. Bit error rate approximation of MIMO-OFDM systems with carrier frequency offset and channel estimation errors. EURASIP J. Wirel. Commun. Netw. 2010, 176083. [Google Scholar] [CrossRef]
- Pattanayak, P.; Trivedi, V.K.; Chakraborty, S.; Kumar, P. BER performance of multi user scheduling for MIMO-STBC and MIMO-OFDM broadcast network with imperfect CSI. In Proceedings of the 4th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2–3 February 2017. [Google Scholar]
- Li, H.; Gao, Q.; Chen, R.; Tamrakar, R.; Sun, S.; Chen, W. Codebook design for massive MIMO systems in LTE. In Proceedings of the IEEE 83rd VTC, Nanjing, China, 15–18 May 2016. [Google Scholar]
- Ji, H.; Kim, Y.; Lee, J.; Onggosanusi, E.; Nam, Y.; Zhang, J.; Lee, B.; Shim, B. Overview of full-dimension MIMO in LTE-Advanced Pro. IEEE Commun. Mag. 2016, 55, 176–184. [Google Scholar] [CrossRef]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, C.J.Z. What Will 5G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Huo, Y.; Dong, X.; Xu, W.; Yuen, M. Cellular and WiFi Co-design for 5G User Equipment. In Proceedings of the IEEE 5G World Forum (5GWF), Silicon Valley, CA, USA, 30 September–2 October 2018; pp. 256–261. [Google Scholar]
- Chen, J.; Lee, B.H.; Wu, W.B. Performance evaluation of BER for an massive-MIMO with M-ary PSK scheme over three-dimension correlated channel. Comput. Electr. Eng. (Elsevier) 2018, 65, 196–206. [Google Scholar] [CrossRef]
- Eduru, S.; Rangaswamy, N. BER analysis of massive MIMO systems under correlated Rayleigh fading channel. In Proceedings of the 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bangalore, India, 10–12 July 2018. [Google Scholar]
- Holma, H.; Toskala, A. WCDMA for UMTS. Radio Access for Third Generation Mobile Communications; Wiley: Chichester, West Sussex, UK, 2004. [Google Scholar]
- Khalaj, B.H.; Paulraj, A.; Kailath, T. 2D RAKE receivers for CDMA cellular systems. In Proceedings of the IEEE Globecom, San Francisco, CA, USA, 28 November–2 December 1994. [Google Scholar]
- Papoulis, A.; Pillai, S. Probability, Random Variables and Stochastic Processes, 4th ed.; McGraw Hill: New York, NY, USA, 2002. [Google Scholar]
- Kazeminia, M.; Mehrjoo, M. A new method for maximum likelihood parameter estimation of Gamma-Gamma distribution. J. Lightwave Technol. 2013, 31, 1347–1353. [Google Scholar] [CrossRef]
- Goldsmith, A. Wireless Communications; Camb. University Press: Cambridge, UK, 2005. [Google Scholar]
Step 1: n ← 0. Set du ← 1, iu ← 2, U← duiu, ε = 10−3. For every kU: tk,n ←, Pk,n ← Step 2: n ← n + 1, and Step 3: Step 4: For arbitrary values of l, q, l′, q′ calculate: , For the real and complex part of calculate: , ← If go to Step 2 Step 5: Calculate αd, θd from the generated samples of Xd Calculate BER from Equation (21) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkonis, P.K.; Kaklamani, D.I. Reduced Complexity BER Calculations in Large Scale Spatial Multiplexing Multi-User MIMO Orientations in Frequency Selective Fading Environments. Electronics 2019, 8, 727. https://doi.org/10.3390/electronics8070727
Gkonis PK, Kaklamani DI. Reduced Complexity BER Calculations in Large Scale Spatial Multiplexing Multi-User MIMO Orientations in Frequency Selective Fading Environments. Electronics. 2019; 8(7):727. https://doi.org/10.3390/electronics8070727
Chicago/Turabian StyleGkonis, Panagiotis K., and Dimitra I. Kaklamani. 2019. "Reduced Complexity BER Calculations in Large Scale Spatial Multiplexing Multi-User MIMO Orientations in Frequency Selective Fading Environments" Electronics 8, no. 7: 727. https://doi.org/10.3390/electronics8070727