Recent Advances in the Processing and Rendering Algorithms for Computer-Generated Holography
Abstract
:1. Introduction
2. Algorithms for Advanced Processing and Rendering of Computer-Generated Holography
2.1. Computer-Generated Hologram Generation
2.1.1. Point-Cloud Approach
2.1.2. Layer-Based Approach
2.1.3. Polygon-Based Approach
2.1.4. Ray-Based Approach
2.2. CGHs Rendering
3. Digital Hologram Reference Datasets
4. Digital Hologram Rendering and Quality Evaluation
4.1. Rendering Algorithm
- B-com, 8-bit and 32-bit format, (the hologram sequences reconstruction is allowed frame-by-frame only);
- Interfere, I, II, and III;
- EmergImg, v1 and v2, (the hologram sequences reconstruction is allowed frame-by-frame only).
4.2. Quality Evaluation
5. Exploration Studies
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maimone, A.; Georgiou, A.; Kollin, J.S. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. (TOG) 2017, 36, 85. [Google Scholar] [CrossRef]
- Schelkens, P.; Ebrahimi, T.; Gilles, A.; Gioia, P.; Oh, K.J.; Pereira, F.; Perra, C.; Pinheiro, A.M. JPEG Pleno: Providing representation interoperability for holographic applications and devices. ETRI J. 2019, 41, 93–108. [Google Scholar] [CrossRef]
- Blinder, D.; Ahar, A.; Bettens, S.; Birnbaum, T.; Symeonidou, A.; Ottevaere, H.; Schretter, C.; Schelkens, P. Signal processing challenges for digital holographic video display systems. Signal Process. Image Commun. 2019, 70, 114–130. [Google Scholar] [CrossRef]
- Cazac, V.; Meshalkin, A.; Achimova, E.; Abashkin, V.; Katkovnik, V.; Shevkunov, I.; Claus, D.; Pedrini, G. Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography. Appl. Opt. 2018, 57, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Quan, X.; Kumar, M.; Matoba, O.; Awatsuji, Y.; Hayasaki, Y.; Hasegawa, S.; Wake, H. Three-dimensional stimulation and imaging-based functional optical microscopy of biological cells. Opt. Lett. 2018, 43, 5447–5450. [Google Scholar] [CrossRef]
- Ruiz, C.G.T.; Manuel, H.; Flores-Moreno, J.; Frausto-Reyes, C.; Santoyo, F.M. Cortical bone quality affectations and their strength impact analysis using holographic interferometry. Biomed. Opt. Express 2018, 9, 4818–4833. [Google Scholar] [CrossRef]
- Kumar, M.; Shakher, C. Experimental characterization of the hygroscopic properties of wood during convective drying using digital holographic interferometry. Appl. Opt. 2016, 55, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.P.; Tahara, T.; Hayasaki, Y.; Poon, T.C. Incoherent digital holography: A review. Appl. Sci. 2018, 8, 143. [Google Scholar] [CrossRef]
- Poon, T.C. On the fundamentals of optical scanning holography. Am. J. Phys. 2008, 76, 738–745. [Google Scholar] [CrossRef]
- Rosen, J.; Brooker, G. Digital spatially incoherent Fresnel holography. Opt. Lett. 2007, 32, 912–914. [Google Scholar] [CrossRef]
- Tsang, P.W.M.; Poon, T.C. Review on the state-of-the-art technologies for acquisition and display of digital holograms. IEEE Trans. Ind. Inform. 2016, 12, 886–901. [Google Scholar] [CrossRef]
- Makey, G.; Yavuz, Ö.; Kesim, D.K.; Turnalı, A.; Elahi, P.; Ilday, S.; Tokel, O.; Ilday, F.Ö. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nat. Photonics 2019, 13, 251. [Google Scholar] [CrossRef]
- Naughton, T.J.; Frauel, Y.; Javidi, B.; Tajahuerce, E. Compression of digital holograms for three-dimensional object reconstruction and recognition. Appl. Opt. 2002, 41, 4124–4132. [Google Scholar] [CrossRef]
- Shortt, A.E.; Naughton, T.J.; Javidi, B. A companding approach for nonuniform quantization of digital holograms of three-dimensional objects. Opt. Express 2006, 14, 5129–5134. [Google Scholar] [CrossRef]
- Xing, Y.; Pesquet-Popescu, B.; Dufaux, F. Comparative study of scalar and vector quantization on different phase-shifting digital holographic data representations. In Proceedings of the 2014 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), Budapest, Hungary, 2–4 July 2014; pp. 1–4. [Google Scholar]
- Shortt, A.E.; Naughton, T.J.; Javidi, B. Compression of digital holograms of three-dimensional objects using wavelets. Opt. Express 2006, 14, 2625–2630. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Tamai, J. Holographic image compression by motion picture coding. In Proceedings of the Practical Holography X. International Society for Optics and Photonics, San Jose, CA, USA, 28 January–2 February 1996; Volume 2652, pp. 2–10. [Google Scholar]
- Seo, Y.H.; Choi, H.J.; Kim, D.W. 3D scanning-based compression technique for digital hologram video. Signal Process. Image Commun. 2007, 22, 144–156. [Google Scholar] [CrossRef]
- Viswanathan, K.; Gioia, P.; Morin, L. Wavelet compression of digital holograms: Towards a view-dependent framework. In Proceedings of the Applications of Digital Image Processing XXXVI. International Society for Optics and Photonics, San Diego, CA, USA, 25–29 August 2013; Volume 8856, p. 88561N. [Google Scholar]
- El Rhammad, A.; Gioia, P.; Gilles, A.; Cagnazzo, M.; Pesquet-Popescu, B. Color digital hologram compression based on matching pursuit. Appl. Opt. 2018, 57, 4930–4942. [Google Scholar] [CrossRef] [PubMed]
- Blinder, D.; Bruylants, T.; Ottevaere, H.; Munteanu, A.; Schelkens, P. JPEG 2000-based compression of fringe patterns for digital holographic microscopy. Opt. Eng. 2014, 53, 123102. [Google Scholar] [CrossRef] [Green Version]
- Peixeiro, J.P.; Brites, C.; Ascenso, J.; Pereira, F. Holographic data coding: Benchmarking and extending hevc with adapted transforms. IEEE Trans. Multimed. 2018, 20, 282–297. [Google Scholar] [CrossRef]
- Yu, H.; Lee, K.; Park, J.; Park, Y. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nat. Photonics 2017, 11, 186. [Google Scholar] [CrossRef]
- Park, J.; Lee, K.; Park, Y. Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve. Nat. Commun. 2019, 10, 1304. [Google Scholar] [CrossRef]
- Lehtimäki, T.M.; Sääskilahti, K.; Näsänen, R.; Naughton, T.J. Visual perception of digital holograms on autostereoscopic displays. In Proceedings of the Three-Dimensional Imaging, Visualization, and Display 2009. International Society for Optics and Photonics, Orlando, FL, USA, 13–17 April 2009; Volume 7329, p. 73290C. [Google Scholar]
- Symeonidou, A.; Blinder, D.; Ceulemans, B.; Munteanu, A.; Schelkens, P. Three-dimensional rendering of computer-generated holograms acquired from point-clouds on light field displays. In Proceedings of the Applications of Digital Image Processing XXXIX. International Society for Optics and Photonics, San Diego, CA, USA, 28 August–1 September 2016; Volume 9971, p. 99710S. [Google Scholar]
- Lehtimäki, T.M.; Sääskilahti, K.; Pitkäaho, T.; Naughton, T.J. Comparing numerical error and visual quality in reconstructions from compressed digital holograms. In Proceedings of the Three-Dimensional Imaging, Visualization, and Display 2010 and Display Technologies and Applications for Defense, Security, and Avionics IV. International Society for Optics and Photonics, Orlando, FL, USA, 5–9 April 2010; Volume 7690, p. 769012. [Google Scholar]
- Darakis, E.; Kowiel, M.; Näsänen, R.; Naughton, T.J. Visually lossless compression of digital hologram sequences. In Proceedings of the Image Quality and System Performance VII. International Society for Optics and Photonics, San Jose, CA, USA, 17–21 January 2010; Volume 7529, p. 752912. [Google Scholar]
- Ahar, A.; Blinder, D.; Bruylants, T.; Schretter, C.; Munteanu, A.; Schelkens, P. Subjective quality assessment of numerically reconstructed compressed holograms. In Proceedings of the Applications of Digital Image Processing XXXVIII. International Society for Optics and Photonics, San Diego, CA, USA, 9–13 August 2015; Volume 9599, p. 95990K. [Google Scholar]
- ISO/IEC JPEG Pleno Database. Available online: https://jpeg.org/plenodb/ (accessed on 18 April 2019).
- Tsang, P.; Poon, T.C.; Wu, Y. Review of fast methods for point-based computer-generated holography. Photonics Res. 2018, 6, 837–846. [Google Scholar] [CrossRef]
- Lucente, M.E. Interactive computation of holograms using a look-up table. J. Electron. Imaging 1993, 2, 28–35. [Google Scholar] [CrossRef]
- Shimobaba, T.; Masuda, N.; Ito, T. Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane. Opt. Lett. 2009, 34, 3133–3135. [Google Scholar] [CrossRef]
- Phan, A.H.; Alam, M.A.; Jeon, S.H.; Lee, J.H.; Kim, N. Fast hologram generation of long-depth object using multiple wavefront recording planes. In Proceedings of the Practical Holography XXVIII: Materials and Applications. International Society for Optics and Photonics, San Francisco, CA, USA, 1–6 February 2014; Volume 9006, p. 900612. [Google Scholar]
- Shimobaba, T.; Ito, T. Fast generation of computer-generated holograms using wavelet shrinkage. Opt. Express 2017, 25, 77–87. [Google Scholar] [CrossRef]
- Arai, D.; Shimobaba, T.; Nishitsuji, T.; Kakue, T.; Masuda, N.; Ito, T. An accelerated hologram calculation using the wavefront recording plane method and wavelet transform. Opt. Commun. 2017, 393, 107–112. [Google Scholar] [CrossRef]
- Park, J.H. Recent progress in computer-generated holography for three-dimensional scenes. J. Inf. Disp. 2017, 18, 1–12. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, L.; Zhang, H.; Kong, D.; Jin, G. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt. Express 2015, 23, 25440–25449. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Chu, D. Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications. Opt. Express 2015, 23, 18143–18155. [Google Scholar] [CrossRef] [PubMed]
- Gilles, A.; Gioia, P.; Cozot, R.; Morin, L. Hybrid approach for fast occlusion processing in computer-generated hologram calculation. Appl. Opt. 2016, 55, 5459–5470. [Google Scholar] [CrossRef]
- Cao, H.K.; Kim, E.S. Full-scale one-dimensional NLUT method for accelerated generation of holographic videos with the least memory capacity. Opt. Express 2019, 27, 12673–12691. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, K.; Nakahara, S. Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method. Appl. Opt. 2009, 48, H54–H63. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kwon, J.; Hahn, J. Accelerated synthesis of wide-viewing angle polygon computer-generated holograms using the interocular affine similarity of three-dimensional scenes. Opt. Express 2018, 26, 16853–16874. [Google Scholar] [CrossRef] [PubMed]
- Shimobaba, T.; Kakue, T.; Ito, T. Review of fast algorithms and hardware implementations on computer holography. IEEE Trans. Ind. Inform. 2016, 12, 1611–1622. [Google Scholar] [CrossRef]
- Wakunami, K.; Yamaguchi, M. Calculation for computer generated hologram using ray-sampling plane. Opt. Express 2011, 19, 9086–9101. [Google Scholar] [CrossRef]
- Sato, H.; Kakue, T.; Ichihashi, Y.; Endo, Y.; Wakunami, K.; Oi, R.; Yamamoto, K.; Nakayama, H.; Shimobaba, T.; Ito, T. Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration. Sci. Rep. 2018, 8, 1500. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, S.; Nakamura, T.; Matsushima, K.; Yamaguchi, M. Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion. Opt. Express 2018, 26, 10773–10786. [Google Scholar] [CrossRef]
- Goodman, J.W. Introduction to Fourier Optics; Roberts and Company Publishers: Greenwood Village, CO, USA, 2005. [Google Scholar]
- Schnars, U.; Jüptner, W.P. Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 2002, 13, R85. [Google Scholar] [CrossRef]
- Kim, M.K. Digital holographic microscopy. In Digital Holographic Microscopy; Springer: Berlin, Germany, 2011; pp. 20–24. [Google Scholar]
- Atlan, M. Ultrahigh-throughput rendering of digital holograms. In Proceedings of the Digital Holography and Three-Dimensional Imaging. Optical Society of America, Orlando, Fl, USA, 25–28 June 2018; p. DM5F-4. [Google Scholar]
- Shimobaba, T.; Weng, J.; Sakurai, T.; Okada, N.; Nishitsuji, T.; Takada, N.; Shiraki, A.; Masuda, N.; Ito, T. Computational wave optics library for C++: CWO++ library. Comput. Phys. Commun. 2012, 183, 1124–1138. [Google Scholar] [CrossRef] [Green Version]
- Niwase, H.; Takada, N.; Araki, H.; Maeda, Y.; Fujiwara, M.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T. Real-time electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator and the InfiniBand network. Opt. Eng. 2016, 55, 093108. [Google Scholar] [CrossRef]
- Sugie, T.; Akamatsu, T.; Nishitsuji, T.; Hirayama, R.; Masuda, N.; Nakayama, H.; Ichihashi, Y.; Shiraki, A.; Oikawa, M.; Takada, N.; et al. High-performance parallel computing for next-generation holographic imaging. Nat. Electron. 2018, 1, 254. [Google Scholar] [CrossRef]
- Nishitsuji, T.; Yamamoto, Y.; Sugie, T.; Akamatsu, T.; Hirayama, R.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T. Special-purpose computer HORN-8 for phase-type electro-holography. Opt. Express 2018, 26, 26722–26733. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Nakayama, H.; Takada, N.; Nishitsuji, T.; Sugie, T.; Kakue, T.; Shimobaba, T.; Ito, T. Large-scale electroholography by HORN-8 from a point-cloud model with 400,000 points. Opt. Express 2018, 26, 34259–34265. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, Y.; Ji, H.; Park, H.; An, J.; Song, H.; Kim, Y.T.; Lee, H.S.; Kim, K. A Single-Chip FPGA Holographic Video Processor. IEEE Trans. Ind. Electron. 2019, 66, 2066–2073. [Google Scholar] [CrossRef]
- Blinder, D.; Ahar, A.; Symeonidou, A.; Xing, Y.; Bruylants, T.; Schreites, C.; Pesquet-Popescu, B.; Dufaux, F.; Munteanu, A.; Schelkens, P. Open access database for experimental validations of holographic compression engines. In Proceedings of the 2015 Seventh International Workshop on Quality of Multimedia Experience (QoMEX), Pylos-Nestoras, Greece, 26–29 May 2015; pp. 1–6. [Google Scholar]
- Symeonidou, A.; Blinder, D.; Ahar, A.; Schretter, C.; Munteanu, A.; Schelkens, P. Speckle noise reduction for computer generated holograms of objects with diffuse surfaces. In Proceedings of the Optics, Photonics and Digital Technologies for Imaging Applications IV. International Society for Optics and Photonics, Brussels, Belgium, 3–7 April 2016; Volume 9896, p. 98960F. [Google Scholar]
- Symeonidou, A.; Blinder, D.; Schelkens, P. Colour computer-generated holography for point clouds utilizing the Phong illumination model. Opt. Express 2018, 26, 10282–10298. [Google Scholar] [CrossRef] [PubMed]
- Gilles, A.; Gioia, P.; Cozot, R.; Morin, L. Computer generated hologram from multiview-plus-depth data considering specular reflections. In Proceedings of the 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Seattle, WA, USA, 11–15 July 2016; pp. 1–6. [Google Scholar]
- Bernardo, M.V.; Fernandes, P.; Arrifano, A.; Antonini, M.; Fonseca, E.; Fiadeiro, P.T.; Pinheiro, A.M.; Pereira, M. Holographic representation: Hologram plane vs. object plane. Signal Process. Image Commun. 2018, 68, 193–206. [Google Scholar] [CrossRef]
- Shin, S.; Kim, K.; Yoon, J.; Park, Y. Active illumination using a digital micromirror device for quantitative phase imaging. Opt. Lett. 2015, 40, 5407–5410. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.; Kim, K.; Park, H.; Choi, C.; Jang, S.; Park, Y. Label-free characterization of white blood cells by measuring 3D refractive index maps. Biomed. Opt. Express 2015, 6, 3865–3875. [Google Scholar] [CrossRef] [Green Version]
- Tomocube Dataset. Available online: http://www.tomocube.com/reference-resources/ (accessed on 18 April 2019).
- Gilles, A.; Gioia, P. Doc. ISO/IEC JTC 1/SC 29/WG1 M82039. In Proceedings of the 82th Meeting, Lisbon, Portugal, 19–25 January 2019. [Google Scholar]
- Peixeiro, J.; Brites, C.; Ascenso, J.; Pereira, F. Digital holography: Benchmarking coding standards and representation formats. In Proceedings of the 2016 IEEE International Conference on Multimedia and Expo (ICME), Seattle, WA, USA, 11–15 July 2016; pp. 1–6. [Google Scholar]
- JPEG XT Reference Software. Available online: https://jpeg.org/jpegxt/software.html (accessed on 18 April 2019).
- Overview of JPEG XS. Available online: https://jpeg.org/jpegxs/index.html (accessed on 18 April 2019).
- JPEG 2000 Kakadu Software. Available online: http://kakadusoftware.com/downloads/ (accessed on 18 April 2019).
- JPEG LS Reference Software. Available online: https://jpeg.org/jpegls/software.html (accessed on 18 April 2019).
- FFmpeg Software. Available online: https://www.ffmpeg.org/ (accessed on 18 April 2019).
- HEVC Reference Software. Available online: https://hevc.hhi.fraunhofer.de/ (accessed on 18 April 2019).
Hologram | HEVC | JPEG 2000 | JPEG XS | JPEG XT | ||||
---|---|---|---|---|---|---|---|---|
Total Rate [bps] | Compressed Size [MB] | Total Rate [bps] | Compressed Size [MB] | Total Rate [bps] | Compressed Size [MB] | Total Rate [bps] | Compressed Size [MB] | |
Dices 8K (Source Size: 805.31 MB) | 2.16 | 18.12 | 0.5 | 4.19 | 0.5 | 4.19 | 6.15 | 51.59 |
5.42 | 45.47 | 1.99 | 16.69 | 2 | 16.78 | 8.7 | 72.98 | |
8.26 | 69.29 | 3.95 | 33.13 | 4 | 33.55 | 12.5 | 104.86 | |
11.83 | 99.24 | 7.95 | 66.69 | 8 | 67.11 | 17.22 | 144.45 | |
15.67 | 131.45 | 11.98 | 100.49 | 12 | 100.66 | 20.97 | 175.91 | |
19.84 | 166.43 | 15.73 | 131.95 | 16 | 134.22 | 26.95 | 226.07 | |
Skull (Source Size: 26.79 MB) | 0.45 | 0.38 | 0.49 | 0.41 | 0.5 | 0.42 | 2.59 | 2.17 |
1.16 | 0.97 | 1.99 | 1.67 | 2 | 1.67 | 3.51 | 2.94 | |
1.92 | 1.61 | 3.97 | 3.32 | 4 | 3.35 | 4.69 | 3.93 | |
3.13 | 2.62 | 7.90 | 6.61 | 8 | 6.70 | 6.31 | 5.28 | |
4.65 | 3.89 | 11.99 | 10.04 | 12 | 10.05 | 7.40 | 6.19 | |
6.03 | 5.05 | 13.90 | 11.64 | 16 | 13.39 | 9.04 | 7.57 |
Hologram | Prediction Type | Real Part [bps] | Imaginary Part [bps] | Total Rate [bps] | CR |
---|---|---|---|---|---|
None | 46.1 | 45.95 | 92.04 | 1.04 | |
Sub | 45.36 | 45.2 | 90.56 | 1.06 | |
Up | 45.53 | 45.37 | 90.89 | 1.06 | |
Dices 8K | Avg | 44.76 | 44.61 | 89.37 | 1.07 |
Paeth | 44.72 | 44.57 | 89.29 | 1.08 | |
Mixed | 44.72 | 44.57 | 89.29 | 1.08 | |
None | 11.71 | 11.68 | 23.4 | 1.37 | |
Sub | 11.4 | 11.36 | 22.76 | 1.41 | |
Up | 11.37 | 11.33 | 22.7 | 1.41 | |
Skull | Avg | 11.17 | 11.12 | 22.29 | 1.43 |
Paeth | 11.13 | 11.09 | 22.22 | 1.44 | |
Mixed | 11.13 | 11.09 | 22.22 | 1.44 |
Sample Name | Real Part [bps] | Imaginary Part [bps] | Total Rate [bps] | CR |
---|---|---|---|---|
Dices 8K | 40.53 | 40.28 | 80.82 | 1.19 |
Skull | 10.06 | 9.98 | 20.04 | 1.60 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corda, R.; Giusto, D.; Liotta, A.; Song, W.; Perra, C. Recent Advances in the Processing and Rendering Algorithms for Computer-Generated Holography. Electronics 2019, 8, 556. https://doi.org/10.3390/electronics8050556
Corda R, Giusto D, Liotta A, Song W, Perra C. Recent Advances in the Processing and Rendering Algorithms for Computer-Generated Holography. Electronics. 2019; 8(5):556. https://doi.org/10.3390/electronics8050556
Chicago/Turabian StyleCorda, Roberto, Daniele Giusto, Antonio Liotta, Wei Song, and Cristian Perra. 2019. "Recent Advances in the Processing and Rendering Algorithms for Computer-Generated Holography" Electronics 8, no. 5: 556. https://doi.org/10.3390/electronics8050556
APA StyleCorda, R., Giusto, D., Liotta, A., Song, W., & Perra, C. (2019). Recent Advances in the Processing and Rendering Algorithms for Computer-Generated Holography. Electronics, 8(5), 556. https://doi.org/10.3390/electronics8050556