Selecting Ultracapacitors for Smoothing Voltage Deviations in Local Grids Fed by Transformer with Tap-Changer and Distributed PV Facilities
Abstract
:1. Introduction
2. Rigorous Determination of SCES Capacitance Value
3. Approximating Procedure of a Dynamic Process
4. Practical Evaluation of a Developed Approximating Procedure
5. Results and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Piano, S.L.; Mayumi, K. Toward an integrated assessment of the performance of photovoltaic power stations for electricity generation. Appl. Energy 2017, 186, 167–174. [Google Scholar] [CrossRef]
- Raugei, M.; Sgouridis, S.; Murphy, D.; Fthenakis, V.; Frischknecht, R.; Breyer, C.; Bardi, U.; Barnhart, C.; Buckley, A.; Carbajales-Dale, M. Energy return on energy invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response. Energy Policy 2017, 102, 377–384. [Google Scholar] [CrossRef]
- Von Appen, J.; Braun, M.; Stetz, T.; Diwold, K.; Geibel, D. Time in the sun: The challenge of high PV penetration in the German electric grid. IEEE Power Energy Mag. 2013, 11, 55–64. [Google Scholar] [CrossRef]
- Feilat, E.A.; Azzam, S.; Al-Salaymeh, A. Impact of large PV and wind power plants on voltage and frequency stability of Jordan’s national grid. Sustain. Cities Soc. 2018, 36, 257–271. [Google Scholar] [CrossRef]
- Rehman, S.; Ahmed, M.A.; Mohamed, M.H.; Al-Sulaiman, F.A. Feasibility study of the grid connected 10MW installed capacity PV power plants in Saudi Arabia. Renew. Sustain. Energy Rev. 2017, 80, 319–329. [Google Scholar] [CrossRef]
- Paatero, J.V.; Lund, P.D. Effects of large-scale photovoltaic power integration on electricity distribution networks. Renew. Energy 2007, 32, 216–234. [Google Scholar] [CrossRef]
- Haque, M.M.; Wolfs, P. A review of high PV penetrations in LV distribution networks: Present status, impacts and mitigation measures. Renew. Sustain. Energy Rev. 2016, 62, 1195–1208. [Google Scholar] [CrossRef]
- Averbukh, M.; Ben-Galim, Y.; Uhananov, A. Development of a quick dynamic response maximum power point tracking algorithm for off-grid system with adaptive switching (On–Off) control of dc/dc converter. J. Sol. Energy Eng. 2013, 135, 021003. [Google Scholar] [CrossRef]
- Gasulla, M.; Robert, F.J.; Jordana, J.; Ripoll-Vercellone, E.; Berenguer, J.; Reverter, F. A High-Efficiency RF Harvester with Maximum Power Point Tracking. Proceedings 2018, 2, 1049. [Google Scholar] [CrossRef]
- Karami, N.; Moubayed, N.; Outbib, R. General review and classification of different MPPT techniques. Renew. Sustain. Energy Rev. 2017, 68, 1–18. [Google Scholar] [CrossRef]
- Kuperman, A.; Sitbon, M.; Gadelovits, S.; Averbukh, M.; Suntio, T. Single-source multi-battery solar charger: Analysis and stability issues. Energies 2015, 8, 6427–6450. [Google Scholar] [CrossRef]
- Mahmoud, Y.; El-Saadany, E.F. A novel MPPT technique based on an image of PV modules. IEEE Trans.Energy Convers. 2017, 32, 213–221. [Google Scholar] [CrossRef]
- Metry, M.; Shadmand, M.B.; Balog, R.S.; Abu-Rub, H. MPPT of photovoltaic systems using sensorless current-based model predictive control. IEEE Trans. Ind. Appl. 2017, 53, 1157–1167. [Google Scholar] [CrossRef]
- Mohanty, S.; Subudhi, B.; Ray, P.K. A grey wolf-assisted perturb & observe MPPT algorithm for a PV system. IEEE Trans. Energy Convers. 2017, 32, 340–347. [Google Scholar]
- Sundareswaran, K.; Vigneshkumar, V.; Sankar, P.; Simon, S.P.; Nayak, P.S.R.; Palani, S. Development of an improved P&O algorithm assisted through a colony of foraging ants for MPPT in PV system. IEEE Trans. Ind. Inform. 2016, 12, 187–200. [Google Scholar]
- Tajuddin, M.; Arif, M.; Ayob, S.; Salam, Z. Perturbative methods for maximum power point tracking (MPPT) of photovoltaic (PV) systems: A review. Int. J. Energy Res. 2015, 39, 1153–1178. [Google Scholar] [CrossRef]
- Viloria-Porto, J.; Robles-Algarín, C.; Restrepo-Leal, D. A novel approach for an MPPT controller based on the ADALINE network trained with the RTRL algorithm. Energies 2018, 11, 3407. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Fang, G.; Zhang, B.; Wen, H.; Tang, H.; Fu, L.; Chen, X. An advanced maximum power point tracking method for photovoltaic systems by using variable universe fuzzy logic control considering temperature variability. Electronics 2018, 7, 355. [Google Scholar] [CrossRef]
- Chaudhary, P.; Rizwan, M. Voltage regulation mitigation techniques in distribution system with high PV penetration: A review. Renew. Sustain. Energy Rev. 2018, 82, 3279–3287. [Google Scholar] [CrossRef]
- Azzouz, M.A.; Farag, H.E.; El-Saadany, E.F. Real-time fuzzy voltage regulation for distribution networks incorporating high penetration of renewable sources. IEEE Syst. J. 2017, 11, 1702–1711. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, R.; Liu, M.; de Carne, G.; Liserre, M.; Milano, F.; O’Donnell, T. Smart transformer for the provision of coordinated voltage and frequency support in the grid. In Proceedings of the IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 5574–5579. [Google Scholar]
- Deng, J.; Zhang, G.; Geng, Y.; Wang, J. Design of intelligent on-load tap changer controlled by permanent magnetic actuator. In Proceedings of the 2017 1st International Conference on Electrical Materials and Power Equipment (ICEMPE), Xi’an, China, 14–17 May 2017; pp. 270–274. [Google Scholar]
- Gomez-Exposito, A.; Conejo, A.J.; Canizares, C. Electric Energy Systems: Analysis and Operation; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Korpikiewicz, J.G.; Mysiak, P. Classical and solid-state tap-changers of HV/MV regulating transformers and their regulators. Acta Energetica 2017. [Google Scholar] [CrossRef]
- Rauma, K.; Cadoux, F.; Roupioz, G.; Dufournet, A.; Hadj-Said, N. Optimal location of voltage sensors in low voltage networks for on-load tap changer application. IET Gener. Transm. Distrib. 2017, 11, 3756–3764. [Google Scholar] [CrossRef]
- Song, I.; Jung, W.; Chu, C.; Cho, S.; Kang, H.; Choi, J. General and simple decision method for DG penetration level in view of voltage regulation at distribution substation transformers. Energies 2013, 6, 4786–4798. [Google Scholar] [CrossRef]
- De Oliveira Quevedo, J.; Cazakevicius, E.; Beltrame, R.C.; Marchesan, T.B.; Michels, L.; Rech, C.; Schuch, L. Analysis and design of an electronic on-load tap changer distribution transformer for automatic voltage regulation. IEEE Trans. Ind. Electron. 2017, 64, 883–894. [Google Scholar] [CrossRef]
- Fernández, S.M.; García, S.M.; Olay, C.C.; Rodríguez, J.C.C.; García, R.V.; López, J.V. Electronic tap changer for very high-power medium-voltage lines with no Series–Parallel thyristors. IEEE Trans. Ind. Electron. 2018, 65, 5237–5249. [Google Scholar] [CrossRef]
- Jin, G.; Yang, K.; Liu, J. Design of a novel voltage regulating distribution transformer with a power electronic-assisted booster system. J. Eng. 2017, 2017, 2324–2327. [Google Scholar] [CrossRef]
- Lu, K.; Lin, F.; Yang, B. Profit optimization-based power compensation control strategy for grid-connected PV system. IEEE Syst. J. 2018, 12, 2878–2881. [Google Scholar] [CrossRef]
- Rostami, A.; Olamaei, J.; Rostami, H. A new islanding detection method in micro grids based on applying full electronic tap changer in power transformer. Electron. Eng. Lett. 2017, 1. [Google Scholar]
- Ma, H.; Gu, S.; Wang, H.; Xu, H.; Wang, C.; Zhou, H. On-load automatic voltage regulation system designed via thyristor for distribution transformer. In Proceedings of the 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 11–14 August 2017; pp. 1–5. [Google Scholar]
- Xu, X.; Wang, Y.; Zhao, T. A Hybrid Switch based Arcless Voltage Regulator. In Proceedings of the 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Charlotte, NC, USA, 25–28 June 2018; pp. 1–5. [Google Scholar]
- Hashemi, S.; Østergaard, J. Methods and strategies for overvoltage prevention in low voltage distribution systems with PV. IET Renew. Power Gener. 2016, 11, 205–214. [Google Scholar] [CrossRef]
- Mateo, C.; Frías, P.; Cossent, R.; Sonvilla, P.; Barth, B. Overcoming the barriers that hamper a large-scale integration of solar photovoltaic power generation in European distribution grids. Sol. Energy 2017, 153, 574–583. [Google Scholar] [CrossRef]
- Luthander, R.; Lingfors, D.; Widén, J. Large-scale integration of photovoltaic power in a distribution grid using power curtailment and energy storage. Sol. Energy 2017, 155, 1319–1325. [Google Scholar] [CrossRef]
- Marra, F.; Yang, G.; Træholt, C.; Ostergaard, J.; Larsen, E. A decentralized storage strategy for residential feeders with photovoltaics. IEEE Trans. Smart Grid 2014, 5, 974–981. [Google Scholar] [CrossRef]
- Chen, S.X.; Gooi, H.B.; Wang, M.Q. Sizing of energy storage for microgrids. IEEE Trans. Smart Grid 2012, 3, 142–151. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H.; Aichhorn, A.; Zheng, J.; Greenleaf, M. Sizing strategy of distributed battery storage system with high penetration of photovoltaic for voltage regulation and peak load shaving. IEEE Trans. Smart Grid 2014, 5, 982–991. [Google Scholar] [CrossRef]
- Glavin, M.E.; Hurley, W.G. Optimization of a photovoltaic battery ultracapacitor hybrid energy storage system. Sol. Energy 2012, 86, 3009–3020. [Google Scholar] [CrossRef]
- Samosir, A.S.; Yatim, A.H.M. Implementation of dynamic evolution control of bidirectional DC-DC converter for interfacing ultracapacitor energy storage to fuel-cell system. IEEE Trans. Ind. Electron. 2010, 57, 3468–3473. [Google Scholar] [CrossRef]
- Wang, L.; Vo, Q.; Prokhorov, A.V. Dynamic stability analysis of a hybrid wave and photovoltaic power generation system integrated into a distribution power grid. IEEE Trans. Sustain. Energy 2017, 8, 404–413. [Google Scholar] [CrossRef]
- Yahalom, A.; Abitbul, Y.; Averbukh, M. Preliminary Dynamic Parameters Comparison of Asymmetric (Ultimo CPQ 2300S, JSR Co.) and Double-Layer (BCAP3400, Maxwell Co.) Ultracapacitors. In Proceedings of the 2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE), Eilat, Israel, 12–14 December 2018; pp. 1–4. [Google Scholar]
- Available online: https://www.jsrmicro.be/emerging-technologies/lithium-ion-capacitor/products/ultimo-lithium-ion-capacitor-prismatic-cells (accessed on 1 March 2018).
- Available online: http://www.maxwell.com/images/documents/K2_2_85V_DS_3000619EN_3_.pdf (accessed on 3 July 2018).
Vo | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | |
---|---|---|---|---|---|---|---|---|---|---|
α = 0.1 | (βopt)abs | 0.42 | 0.54 | 0.63 | 0.71 | 0.76 | 0.81 | 0.86 | 0.9 | 0.93 |
(δtot, p.u.) × 103 | 48.2 | 25.8 | 14.4 | 8.5 | 4.7 | 2.5 | 1.2 | 0.45 | 0.11 | |
α = 0.05 | (βopt)abs | 0.43 | 0.55 | 0.64 | 0.72 | 0.78 | 0.83 | 0.88 | 0.92 | 0.95 |
(δtot, p.u.) × 103 | 48.6 | 26 | 14.6 | 8.7 | 4.8 | 2.5 | 1.2 | 0.46 | 0.1 | |
α = 0.01 | (βopt)abs | 0.43 | 0.57 | 0.65 | 0.73 | 0.79 | 0.84 | 0.9 | 0.93 | 0.97 |
(δtot, p.u.) × 103 | 48.9 | 26.7 | 14.8 | 8.8 | 4.8 | 2.6 | 1.3 | 0.46 | 0.11 | |
α = 0.001 | (βopt)abs | 0.43 | 0.55 | 0.65 | 0.73 | 0.79 | 0.85 | 0.9 | 0.94 | 0.97 |
(δtot, p.u.) × 103 | 49 | 26.3 | 14.9 | 8.9 | 4.9 | 2.6 | 1.3 | 0.47 | 0.12 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorkin, O.; Farber, E.; Averbukh, M. Selecting Ultracapacitors for Smoothing Voltage Deviations in Local Grids Fed by Transformer with Tap-Changer and Distributed PV Facilities. Electronics 2019, 8, 357. https://doi.org/10.3390/electronics8030357
Sorkin O, Farber E, Averbukh M. Selecting Ultracapacitors for Smoothing Voltage Deviations in Local Grids Fed by Transformer with Tap-Changer and Distributed PV Facilities. Electronics. 2019; 8(3):357. https://doi.org/10.3390/electronics8030357
Chicago/Turabian StyleSorkin, Oz, Eliyahu Farber, and Moshe Averbukh. 2019. "Selecting Ultracapacitors for Smoothing Voltage Deviations in Local Grids Fed by Transformer with Tap-Changer and Distributed PV Facilities" Electronics 8, no. 3: 357. https://doi.org/10.3390/electronics8030357
APA StyleSorkin, O., Farber, E., & Averbukh, M. (2019). Selecting Ultracapacitors for Smoothing Voltage Deviations in Local Grids Fed by Transformer with Tap-Changer and Distributed PV Facilities. Electronics, 8(3), 357. https://doi.org/10.3390/electronics8030357