Design and Construction of a Cost-Effective Didactic Robotic Arm for Playing Chess, Using an Artificial Vision System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Robotic Arm Design
Gripper Design
2.2. Control Stage with Arduino
2.2.1. Stepper Drivers
2.2.2. G-Code Commands
2.3. Computer Software
2.3.1. Image Capture and Preprocessing
2.3.2. Chessboard Corner Detection and Image Segmentation
2.3.3. Change Detection and Class Classification
2.3.4. Move Validation
2.3.5. Visual Servoing
2.3.6. Robot Calibration and Kinematics
2.4. Graphical User Interface
3. Results and Discussion
3.1. Results for Capture and Image Processing
3.2. Chessboard Detection and Segmentation of the Squares
3.3. Recognition Models
3.4. Manipulation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kovacs, G.; Petunin, A.; Ivanko, J.; Yusupova, N. From the First Chess-Automaton to the Mars Pathfinder. Acta Polytech. Hung. 2016, 13, 61–81. [Google Scholar]
- Crandall, J.W.; Oudah, M.; Tennom; Ishowo-Oloko, F.; Abdallah, S.; Bonnefon, J.F.; Cebrian, M.; Shariff, A.; Goodrich, M.A.; Rahwan, I. Cooperating with machines. Nat. Commun. 2018, 9, 233. [Google Scholar] [CrossRef] [PubMed]
- Reconstructing Turing’s “Paper Machine”. Available online: https://en.chessbase.com/post/reconstructing-turing-s-paper-machine (accessed on 5 September 2019).
- Van den Herik, H.J. Computer chess: From idea to DeepMind. ICGA J. 2018, 40, 160–176. [Google Scholar] [CrossRef]
- Chakraborty, S.; Bhojwani, R. Artificial intelligence and human rights: Are they convergent or parallel to each other? Novum Jus 2018, 12, 13–38. [Google Scholar] [CrossRef]
- Castellano, G.; Leite, I.; Paiva, A. Detecting perceived quality of interaction with a robot using contextual features. Auton. Robot. 2017, 41, 1245–1261. [Google Scholar] [CrossRef]
- Dehghani, H.; Babamir, S.M. A GA based method for search-space reduction of chess game-tree. Appl. Intell. 2017, 47, 752–768. [Google Scholar] [CrossRef]
- Huang, M.-B.; Huang, H.-P. Innovative human-like dual robotic hand mechatronic design and its chess-playing experiment. IEEE Access 2019, 7, 7872–7888. [Google Scholar] [CrossRef]
- Lukač, D. Playing chess with the assistance of an industrial robot. In Proceedings of the 3rd International Conference on Control and Robotics Engineering, Nagoya, Japan, 20–23 April 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Anh, N.D.; Nhat, L.T.; Van Phan Nhan, T. Design and control automatic chess-playing robot arm. Lect. Notes Electr. Eng. 2016, 371, 485–496. [Google Scholar] [CrossRef]
- Wei, Y.-A.; Huang, T.-W.; Chen, H.-T.; Liu, J. Chess recognition from a single depth image. In Proceedings of the IEEE International Conference on Multimedia and Expo, Hong Kong, China, 10–14 July 2017; pp. 931–936. [Google Scholar] [CrossRef]
- Larregay, G.; Pinna, F.; Avila, L.; Moran, D. Design and Implementation of a Computer Vision System for an Autonomous Chess-Playing Robot. J. Comput. Sci. Technol. 2018, 18, 1–11. [Google Scholar] [CrossRef]
- Xie, Y.; Tang, G.; Hoff, W. Chess Piece Recognition Using Oriented Chamfer Matching with a Comparison to CNN. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, NV, USA, 12–15 March 2018; pp. 2001–2009. [Google Scholar] [CrossRef]
- Czyzewski, M.A.; Laskowski, A.; Wasik, S. Chessboard and chess piece recognition with the support of neural networks. Comput. Vis. Image Underst. 2018, 2, 1–11. [Google Scholar]
- Al-Saedi, F.A.T.; Mohammed, A.H. Design and Implementation of Chess-Playing Robotic System. IJCSET 2015, 5, 90–98. [Google Scholar]
- Mahmood, N.H.; Long, C.K.M.S.C.K. Smart Electronic Chess Board Using Reed Switch. J. Teknol. 2011, 55, 41–52. [Google Scholar] [CrossRef]
- Larregay, G.; Avila, L.; Moran, O. A comparison of classification algorithms for chess pieces detection. In Proceedings of the 17th Workshop on Information Processing and Control, Mar del Plata, Argentina, 20–22 October 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Ómarsdóttir, F.Y.; Ólafsson, R.B.; Foley, J.T. The Axiomatic Design of Chessmate: A Chess-playing Robot. Procedia CIRP 2016, 53, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Pachtrachai, K.; Vasconcelos, F.; Dwyer, G.; Pawar, V.; Hailes, S.; Stoyanov, D. CHESS-Calibrating the Hand-Eye Matrix with Screw Constraints and Synchronization. IEEE Robot. Autom. Lett. 2018, 3, 2000–2007. [Google Scholar] [CrossRef]
- Luqman, H.M.; Zaffar, M. Chess Brain and Autonomous Chess Playing Robotic System. In Proceedings of the International Conference on Autonomous Robot Systems and Competitions, Braganca, Portugal, 4–6 May 2016; pp. 211–216. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Q. Vision-based entity Chinese chess playing robot design and realization. In International Conference on Intelligent Robotics and Applications; Springer: Cham, Switzerland, 2015; Volume 9246, pp. 341–351. [Google Scholar] [CrossRef]
- Chen, B.; Xiong, C.; Zhang, Q. CCDN: Checkerboard corner detection network for robust camera calibration. In International Conference on Intelligent Robotics and Applications; Springer: Cham, Switzerland, 2018; Volume 10985, pp. 324–334. [Google Scholar] [CrossRef]
- Kumar, R.V.Y. Target following Camera System Based on Real Time Recognition and Tracking. Master’s Thesis, National Institute of Technology, Rourkela, India, May 2014. [Google Scholar]
- Bennett, S.; Lasenby, J. ChESS-Quick and robust detection of chess-board features. Comput. Vis. Image Underst. 2014, 118, 197–210. [Google Scholar] [CrossRef]
- Matuszek, C.; Mayton, B.; Aimi, R.; Deisenroth, M.P.; Bo, L.; Chu, R.; Kung, M.; Le Grand, L.; Smith, J.R.; Fox, D. Gambit: An autonomous chess-playing robotic system. In Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, WA, USA, 9–13 May 2011; pp. 4291–4297. [Google Scholar] [CrossRef]
- Koray, C.; Sümer, E. A Computer Vision System for Chess Game Tracking. In Proceedings of the 21st Computer Vision Winter Workshop, Rimske Toplice, Slovenia, 3–5 February 2016; pp. 1–7. [Google Scholar]
- Christie, D.A.; Kusuma, T.M.; Musa, P. Chess piece movement detection and tracking, a vision system framework for autonomous chess playing robot. In Proceedings of the 2nd International Conference on Informatics and Computing, Papua, Indonesia, 1–3 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, A.T.-Y.; Wang, K.I.-K. Robust Computer Vision Chess Analysis and Interaction with a Humanoid Robot. Computers 2019, 8, 14. [Google Scholar] [CrossRef]
- Yıldız, İ.; Tian, P.; Dy, J.; Erdoğmuş, D.; Brown, J.; Kalpathy-Cramer, J.; Ostmo, S.; Peter Campbell, J.; Chiang, M.F.; Ioannidis, S. Classification and comparison via neural networks. Neural Netw. 2019, 118, 65–80. [Google Scholar] [CrossRef]
- Sun, W.-T.; Chao, T.-H.; Kuo, Y.-H.; Hsu, W.H. Photo Filter Recommendation by Category-Aware Aesthetic Learning. IEEE Trans. Multimed. 2017, 19, 1870–1880. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.B.; Chen, J.L.; Pan, W.; Hwang, K.S.; Cho, Y.Y. Collision Avoidance for Redundant Robots in Position-Based Visual Servoing. IEEE Syst. J. 2019, 13, 3479–3489. [Google Scholar] [CrossRef]
- Pairo, W.; Loncomilla, P.; Del Solar, J.R. A Delay-Free and Robust Object Tracking Approach for Robotics Applications. J. Intell. Robot. Syst. 2019, 95, 99–117. [Google Scholar] [CrossRef]
- Kim, S.; Seo, H.; Choi, S.; Kim, H.J. Vision-Guided Aerial Manipulation Using a Multirotor With a Robotic Arm. IEEE-ASME Trans. Mechatron. 2016, 21, 1912–1923. [Google Scholar] [CrossRef]
- Beckerle, P.; Bianchi, M.; Castellini, C.; Salvietti, G. Mechatronic designs for a robotic hand to explore human body experience and sensory-motor skills: A Delphi study. Adv. Robot. 2018, 32, 670–680. [Google Scholar] [CrossRef]
- Robles, C.A.; Román Ortega, D.J.; Polo Llanos, A.M. Design of an eighteen degrees-of-freedom robotic arm with teleoperation by an electronic glove [Brazo robótico con dieciocho grados de libertad tele-operado por un guante electrónico]. Espacios 2017, 38, 22. [Google Scholar]
- Robles-Algarín, C.; Echavez, W.; Polo, A. Printed Circuit Board Drilling Machine Using Recyclables. Electronics 2018, 7, 240. [Google Scholar] [CrossRef]
- Covaciu, F.; Filip, D. Design and Manufacturing of A 6 Degree of Freedom Robotic Arm. Acta Tech. Napoc. Ser.-Appl. Math. Mech. Eng. 2019, 62, 107–114. [Google Scholar]
- Timoftei, S.; Brad, E.; Sarb, A.; Stan, O. Open-Source Software in Robotics. Acta Tech. Napoc. Ser.-Appl. Math. Mech. Eng. 2018, 61, 519–526. [Google Scholar]
- Safin, R.; Lavrenov, R.; Martinez-Garcia, E.A.; Magid, E. ROS-based Multiple Cameras Video Streaming for a Teleoperation Interface of a Crawler Robot. J. Robot. Netw. Artif. Life 2018, 5, 184–189. [Google Scholar] [CrossRef]
- Rosa, S.; Toscana, G.; Bona, B. Q-PSO: Fast Quaternion-Based Pose Estimation from RGB-D Images. J. Intell. Robot. Syst. 2018, 92, 465–487. [Google Scholar] [CrossRef]
- Lin, J.P.; Guo, T.L.; Yan, Q.F.; Wang, W.X. Image segmentation by improved minimum spanning tree with fractional differential and Canny detector. J. Algorithms Comput. Technol. 2019, 13. [Google Scholar] [CrossRef]
- Wu, G.H.; Yang, D.Y.; Chang, C.; Yin, L.F.; Luo, B.; Guo, H. Optimizations of Canny Edge Detection in Ghost Imaging. J. Korean Phys. Soc. 2019, 75, 223–228. [Google Scholar] [CrossRef]
- Mazhar, O.; Navarro, B.; Ramdani, S.; Passama, R.; Cherubini, A. A real-time human-robot interaction framework with robust background invariant hand gesture detection. Robot. Comput. Integr. Manuf. 2019, 60, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Winterhalter, W.; Fleckenstein, F.V.; Dornhege, C.; Burgard, W. Crop Row Detection on Tiny Plants with the Pattern Hough Transform. IEEE Robot. Autom. Lett. 2018, 3, 3394–3401. [Google Scholar] [CrossRef]
- Banerjee, D.; Yu, K.; Aggarwal, G. Object Tracking Test Automation Using a Robotic Arm. IEEE Access 2018, 6, 56378–56394. [Google Scholar] [CrossRef]
- Alzarok, H.; Fletcher, S.; Longstaff, A.P. 3D Visual Tracking of an Articulated Robot in Precision Automated Tasks. Sensors 2017, 17, 104. [Google Scholar] [CrossRef]
- Paulo, J.; Asvadi, A.; Peixoto, P.; Amorim, P. Human gait pattern changes detection system: A multimodal vision-based and novelty detection learning approach. Biocybern. Biomed. Eng. 2017, 37, 701–717. [Google Scholar] [CrossRef]
- Costa, M.A.; Wullt, B.; Norrlof, M.; Gunnarsson, S. Failure detection in robotic arms using statistical modeling, machine learning and hybrid gradient boosting. Measurement 2019, 146, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Janke, J.; Castelli, M.; Popovic, A. Analysis of the proficiency of fully connected neural networks in the process of classifying digital images. Benchmark of different classification algorithms on high-level image features from convolutional layers. Expert Syst. Appl. 2019, 135, 12–38. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.C.; Yeung, H.W.F.; Qu, Q.; Chung, Y.Y.; Chen, X.M.; Chen, Z.B. Improved image classification with 4D light-field and interleaved convolutional neural network. Multimed. Tools Appl. 2019, 78, 29211–29227. [Google Scholar] [CrossRef]
- Seo, J.H.; Kwon, D.S. Learning 3D local surface descriptor for point cloud images of objects in the real-world. Robot. Auton. Syst. 2019, 116, 64–79. [Google Scholar] [CrossRef]
- Kuai, Y.L.; Wen, G.J.; Li, D.D. Masked and dynamic Siamese network for robust visual tracking. Inf. Sci. 2019, 503, 169–182. [Google Scholar] [CrossRef]
- Liu, X.N.; Zhou, Y.; Zhao, J.Q.; Yao, R.; Liu, B.; Zheng, Y. Siamese Convolutional Neural Networks for Remote Sensing Scene Classification. IEEE Geosci. Remote Sens. 2019, 16, 1200–1204. [Google Scholar] [CrossRef]
- Yang, K.; Song, H.H.; Zhang, K.H.; Fan, J.Q. Deeper Siamese network with multi-level feature fusion for real-time visual tracking. Electron. Lett. 2019, 55, 742–744. [Google Scholar] [CrossRef]
- Cheng, C.A.; Huang, H.P.; Hsu, H.K.; Lai, W.Z.; Cheng, C.C. Learning the Inverse Dynamics of Robotic Manipulators in Structured Reproducing Kernel Hilbert Space. IEEE Trans. Cybern. 2016, 46, 1691–1703. [Google Scholar] [CrossRef] [PubMed]
- Ci, W.Y.; Huang, Y.P. A Robust Method for Ego-Motion Estimation in Urban Environment Using Stereo Camera. Sensors 2016, 16, 1704. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, C.; Kanade, T. Detection and Tracking of Point Features. Int. J. Comput. Vis. 1991, 9, 137–154. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
del Toro, C.; Robles-Algarín, C.; Rodríguez-Álvarez, O. Design and Construction of a Cost-Effective Didactic Robotic Arm for Playing Chess, Using an Artificial Vision System. Electronics 2019, 8, 1154. https://doi.org/10.3390/electronics8101154
del Toro C, Robles-Algarín C, Rodríguez-Álvarez O. Design and Construction of a Cost-Effective Didactic Robotic Arm for Playing Chess, Using an Artificial Vision System. Electronics. 2019; 8(10):1154. https://doi.org/10.3390/electronics8101154
Chicago/Turabian Styledel Toro, Cristian, Carlos Robles-Algarín, and Omar Rodríguez-Álvarez. 2019. "Design and Construction of a Cost-Effective Didactic Robotic Arm for Playing Chess, Using an Artificial Vision System" Electronics 8, no. 10: 1154. https://doi.org/10.3390/electronics8101154
APA Styledel Toro, C., Robles-Algarín, C., & Rodríguez-Álvarez, O. (2019). Design and Construction of a Cost-Effective Didactic Robotic Arm for Playing Chess, Using an Artificial Vision System. Electronics, 8(10), 1154. https://doi.org/10.3390/electronics8101154