Resonant Hybrid Flyback, a New Topology for High Density Power Adaptors
Abstract
:1. Introduction
2. Asymmetrical Duty Cycle Flyback
2.1. Topology
2.2. Resonant Operation Phases
3. Asymmetrical Duty Cycle Flyback Control Methods
3.1. Duty Cycle and Output Voltage
3.2. Considerations for ZVS Operation
- (a)
- Ensuring that enough current flows through the Lr. However this solution is compromising: Due to the sharp di/dt on the secondary leakage inductance, the voltage across D1 will oscillate resulting in higher voltage requirements and in high EMI.
- (b)
- Ensuring that enough current flows through the magnetizing inductance, due to the larger value of Lm compared to Lr. This is the preferred way to ensure ZVS. Furthermore, oscillations in the output can be avoided if the secondary current is zero (ZCS) (Isec @ t5 in Figure 3).
3.3. Proposed Resonant Operation
- (a)
- Zero current switching (ZCS) in the secondary side, which avoids losses in the secondary side snubber due to the non-zero current in the secondary leakage inductance.
- (b)
- It allows an easier drive of the synchronous rectifier because it avoids late switch off, i.e., as happened in CCM-operated flyback converters [6].
- (c)
- It avoids double SR (synchronous rectifier) pulses as can happen in active clamp flyback converters [3].
- (d)
- It results in an output current waveform that has a lower RMS (root mean square) value compared to other topologies, such as standard flyback or active clamp flyback converters, by reducing resistive losses (as shown in Figure 3).
3.4. Understanding the Energy Storage
3.5. Magnetizing Current Displacement
3.6. Overpower Capability
4. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Panepinto, P.A. Making power adapters smarter and greener. In Proceedings of the 2009 IEEE International Symposium on Sustainable Systems and Technology, Phoenix, AZ, USA, 18–20 May 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Steigerwald, R.L.; de Doncker, R.W.; Kheraluwala, M.H. A comparison of high power DC-to-DC soft-switched converter topologies. In Proceedings of the 1994 IEEE Industry Applications Society Annual Meeting, Denver, CO, USA, 2–6 October 1994; Volume 2, pp. 1090–1096. [Google Scholar] [CrossRef]
- Alou, P.; Garcia, O.; Cobos, J.A.; Uceda, J.; Rascon, M. Flyback with active clamp: A suitable topology for low power and very wide input voltage range applications. In Proceedings of the APEC Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No. 02CH37335), Dallas, TX, USA, 10–14 March 2002; Volume 1, pp. 242–248. [Google Scholar] [CrossRef]
- Watson, R.; Lee, F.C.; Hua, G.C. Utilization of an active-clamp circuit to achieve soft switching in flyback converters. IEEE Trans. Power Electron. 1996, 11, 162–169. [Google Scholar] [CrossRef]
- Deboy, G.; Kasper, M.J.; Medina-Garcia, A.; Schlenk, A. A New Era in Power Electronics with Gallium Nitride. ETG J. Infineon Article 2018, 2, 6. [Google Scholar]
- Papanikolaou, N.P.; Tatakis, E.C. Active voltage clamp in flyback converters operating in CCM mode under wide load variation. IEEE Trans. Ind. Electron. 2004, 51, 632–640. [Google Scholar] [CrossRef]
- Pala, V.; Barkley, A.; Hull, B.; Wang, G.; Ryu, S.H.; Van Brunt, E.; Lichtenwalner, D.; Richmond, J.; Jonas, C.; Capell, C.; et al. 900V silicon carbide MOSFETs for breakthrough power supply design. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 4145–4150. [Google Scholar] [CrossRef]
- Garcia-Rodriguez, L.; Williams, E.; Balda, J.C.; Gonzalez-Llorente, J.; Lindstrom, E.; Oliva, A. Dual-stage microinverter design with a GaN-based interleaved flyback converter stage. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 4496–4502. [Google Scholar] [CrossRef]
- Lim, S.H. Asymmetrical Duty Cycle Flyback Converter. U.S. Patent US5959850A, 28 September 1999. [Google Scholar]
- Li, H.; Zhou, W.; Zhou, S.; Yi, X. Analysis and design of high frequency asymmetrical half bridge flyback converter. In Proceedings of the 2008 International Conference on Electrical Machines and Systems, Wuhan, China, 17–20 October 2008; pp. 1902–1904. [Google Scholar]
- Garcia, A.M.; Kasper, M.J.; Schlenk, M.; Deboy, G. Asymmetrical flyback converter in high density SMPS. In Proceedings of the PCIM 2018, Nuremberg, Germany, 5–7 June 2018. [Google Scholar]
- Huber, L.; Jovanović, M.M. Analysis, Design and Performance Evaluation of Asymmetrical Half-Bridge Flyback Converter for Universial-LineVoltage-Range Applications. In Proceedings of the Applied Power Electronics Conference and Exposition (APEC 2017), Tampa, FL, USA, 26–30 March 2017. [Google Scholar]
- Chen, T.M.; Chen, C.L. Small-Signal Modeling of Asymmetrical Half Bridge Flyback Converter. In Proceedings of the CES/IEEE 5th International Power Electronics and Motion Control Conference National, Shanghai, China, 14–16 August 2006. [Google Scholar]
- Xue, L.; Zhang, J. Active clamp flyback using GaN power IC for power adapter applications. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017; pp. 2441–2448. [Google Scholar]
Parameter | Value |
---|---|
Max output current | 3.25 A |
Output voltage | 20 V |
Input voltage | 90–264 Vac |
Power density | >20 w/inch3 |
Efficiency full load | >93% |
EMC | EN55022 class B |
Parameter | HB Mosfets | SR Mosfet |
---|---|---|
Manufacturer | Infineon | Infineon |
Reference | IPP50R140CP | BSC093N15NS5 |
Rds(on) | 140 mOhm | 9.3 mOhm |
Vds max | 500 V | 150 V |
Co(tr) | 230 pF | 604 pF |
Qgs | 48 nC | 14 nC |
Parameter | HB Mosfets |
---|---|
Core type | RM8 |
Core material | 3C95 |
Lm | 52uH |
Llk | 1.7uH |
Np | 18 turns (Litz 40 × 0.1 mm) |
Ns | 7 turns (TIW Litz 70 × 0.1 mm) |
Winding interleaving | P-S-P |
Parameter | HB Mosfets |
---|---|
AC source | Chroma 61505 |
Programmable load | Chroma 63202 |
Power analyzer | Yokogawa WT500 |
Spectrum analyzer | Rohde&Schwarz HMS-X |
Oscilloscope | Yokogawa DLM6054 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-Garcia, A.; Schlenk, M.; Morales, D.P.; Rodriguez, N. Resonant Hybrid Flyback, a New Topology for High Density Power Adaptors. Electronics 2018, 7, 363. https://doi.org/10.3390/electronics7120363
Medina-Garcia A, Schlenk M, Morales DP, Rodriguez N. Resonant Hybrid Flyback, a New Topology for High Density Power Adaptors. Electronics. 2018; 7(12):363. https://doi.org/10.3390/electronics7120363
Chicago/Turabian StyleMedina-Garcia, Alfredo, Manfred Schlenk, Diego P. Morales, and Noel Rodriguez. 2018. "Resonant Hybrid Flyback, a New Topology for High Density Power Adaptors" Electronics 7, no. 12: 363. https://doi.org/10.3390/electronics7120363
APA StyleMedina-Garcia, A., Schlenk, M., Morales, D. P., & Rodriguez, N. (2018). Resonant Hybrid Flyback, a New Topology for High Density Power Adaptors. Electronics, 7(12), 363. https://doi.org/10.3390/electronics7120363