Simulation Analysis in Sub-0.1 μm for Partial Isolation Field-Effect Transistors
Abstract
1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Five Slope
3.2. Various Dielectric Constants
3.3. Silicon Film Thickness
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chang, L.; Choi, Y.-K.; Ha, D.; Ranade, P.; Xiong, S.; Bokor, J.; Hu, C.; King, T.-J. Extremely scaled silicon nano-CMOS device. Proc. IEEE 2003, 91, 1860–1873. [Google Scholar] [CrossRef]
- Veeraraghavan, S.; Fossum, J.G. Short-Channel Effects in SO1 MOSFET’s. IEEE Trans. Electron Devices 1989, 36, 522–528. [Google Scholar] [CrossRef]
- Risho, K. Buried Layer Engineering to Reduce the Drain-Induced Barrier Lowering of Sub-0.05 µm SOI-MOSFET. Jpn. J. Appl. Phys. 1999, 38, 2294–2299. [Google Scholar]
- Wang, J.; Kistler, N.; Woo, J.; Viswanathan, C.R. Mobility-Field Behavior of Fully Depleted SO1 MOSFET’s. IEEE Electron Device Lett. 1994, 15, 117–119. [Google Scholar] [CrossRef]
- Veeraraghavan, S.; Fossum, J.G. A Physical Short-channel Model for the Thin-Film SOI MOSFET Applicable to Device and Circuit CAD. IEEE Trans. Electron Devices 1988, 35, 1866–1874. [Google Scholar] [CrossRef]
- Koh, R.; Kato, H.; Matsumoto, H. Capacitance Network Model of the Short Channel Effect for 0.1 µm Fully Depleted SOI MOSFET. Jpn. J. Appl. Phys. 1996, 35, 996–1000. [Google Scholar] [CrossRef]
- Kumar, M.J.; Chaudhry, A. Two-Dimensional Analytical Modeling of Fully Depleted DMG SOI MOSFET and Evidence for Diminished SCEs. IEEE Trans. Electron Devices 2004, 51, 569–574. [Google Scholar] [CrossRef]
- Chaudhry, A.; Kumar, M.J. Investigation of the Novel Attributes of a Fully Depleted Dual-Material Gate SOI MOSFET. IEEE Trans. Electron Devices 2004, 51, 1463–1467. [Google Scholar] [CrossRef]
- Joachim, H.O.; Yamaguchi, Y.; Ishikawa, K.; Inoue, Y.; Nishimura, T. Simulation and Two-Dimensional Analytical Modeling of Subthreshold Slope in Ultrathin-Film SOI MOSFET’s Down to 0.1 um Gate Length. IEEE Trans. Electron Devices 1993, 40, 1812–1817. [Google Scholar] [CrossRef]
- Lee, M.J.; Cho, J.H.; Lee, S.D.; Ahn, J.H.; Kim, J.W.; Park, S.W.; Park, Y.J.; Min, H.S. Partial SOI Type Isolation for Improvement of DRAM Cell Transistor Characteristics. IEEE Trans. Electron Devices 2005, 26, 332–334. [Google Scholar]
- Kim, Y.K.; Lee, J.S.; Kim, G.; Park, T.; Kim, H.J.; Cho, Y.P.; Park, Y.J.; Lee, M.J. The optimized Partial Insulator Isolation MOSFET (PiFET). J. Semicond. Technol. Sci. 2017, 17, 729–732. [Google Scholar] [CrossRef]
- Jin, S.; Lee, M.J.; Yi, J.H.; Choi, J.H.; Kang, D.G.; Chung, I.Y.; Park, Y.J.; Min, H.S. New Direct Evaluation Method to Obtain the Data Retention Time Distribution of DRAM. IEEE Trans. Electron Devices 1992, 39, 2244–2350. [Google Scholar] [CrossRef]
- Hurkx, G.A.M.; Klaassen, D.B.M.; Knuvers, M.P.G. A New Recombination Model for Device Simulation Including Tunneling. IEEE Trans. Electron Devices 2006, 53, 331–338. [Google Scholar] [CrossRef]
- Jang, E.; Shin, S.; Jung, J.W.; Kim, K.R. Gate induced drain leakage reduction with analysis of gate fringing field effect on high-κ/metal gate CMOS technology. Jpn. J. Appl. Phys. 2015, 54, 06FG10. [Google Scholar] [CrossRef]
- Cheng, B.; Cao, M.; Rao, R.; Inani, A.; Voorde, P.V.; Greene, W.M.; Stork, J.M.; Yu, Z.; Zeitzoff, P.M.; Woo, J.C. The Impact of High-k Gate Dielectrics and Metal Gate Electrodes on Sub-100 nm MOSFET’s. IEEE Trans. Electron Devices 1999, 46, 1537–1544. [Google Scholar] [CrossRef]
- Ernst, T.; Tinella, C.; Raynaud, C.; Cristoloveanu, S. Fringing fields in sub-0.1 μm fully depleted SOI MOSFETs: Optimization of the device architecture. Solid-State Electron. 2002, 46, 373–378. [Google Scholar] [CrossRef]
- Mizuno, T.; Kobori, T.; Saitoh, Y.; Sawada, S.; Tanaka, T. Gate-Fringing Field Effects on High Performance in High Dielectric LDD Spacer MOSFET’s. IEEE Trans. Electron Devices 1992, 39, 982–989. [Google Scholar] [CrossRef]
- Feng, W.S.; Chan, T.Y.; Hu, C. MOSFET Drain Breakdown Voltage. IEEE Trans. Electron Devices 1986, 7, 572–574. [Google Scholar]
- Chen, J.; Chan, T.Y.; Chen, I.C.; Ko, P.K.; Hu, C. Subbreakdown Drain Leakage Current in MOSFET. IEEE Trans. Electron Devices 1987, 8, 449–450. [Google Scholar] [CrossRef]
- Chen, J.; Assaderaghi, F.; Ko, P.K.; Hu, C. The Enhancement of Gate-Induced-Drain-Leakage (GIDL) Current in Short-Channel SO1 MOSFET and its Application in Measuring Lateral Bipolar Current Gain β. IEEE Trans. Electron Devices 1992, 13, 515–517. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.K.; Lee, J.S.; Kim, G.; Park, T.; Kim, H.; Cho, Y.P.; Park, Y.J.; Lee, M.J. Simulation Analysis in Sub-0.1 μm for Partial Isolation Field-Effect Transistors. Electronics 2018, 7, 227. https://doi.org/10.3390/electronics7100227
Kim YK, Lee JS, Kim G, Park T, Kim H, Cho YP, Park YJ, Lee MJ. Simulation Analysis in Sub-0.1 μm for Partial Isolation Field-Effect Transistors. Electronics. 2018; 7(10):227. https://doi.org/10.3390/electronics7100227
Chicago/Turabian StyleKim, Young Kwon, Jin Sung Lee, Geon Kim, Taesik Park, HuiJung Kim, Young Pyo Cho, Young June Park, and Myoung Jin Lee. 2018. "Simulation Analysis in Sub-0.1 μm for Partial Isolation Field-Effect Transistors" Electronics 7, no. 10: 227. https://doi.org/10.3390/electronics7100227
APA StyleKim, Y. K., Lee, J. S., Kim, G., Park, T., Kim, H., Cho, Y. P., Park, Y. J., & Lee, M. J. (2018). Simulation Analysis in Sub-0.1 μm for Partial Isolation Field-Effect Transistors. Electronics, 7(10), 227. https://doi.org/10.3390/electronics7100227