Nonvolatile Applications and Reliability Investigation of La-Doped ZrO2 Antiferroelectric Capacitors
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Böscke, T.S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903. [Google Scholar] [CrossRef]
- Müller, J.; Böscke, T.S.; Schröder, U.; Mueller, S.; Bräuhaus, D.; Böttger, U.; Frey, L.; Mikolajick, T. Ferroelectricity in Simple Binary ZrO2 and HfO2. Nano Lett. 2012, 12, 4318–4323. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.; Mueller, J.; Singh, A.; Riedel, S.; Sundqvist, J.; Schroeder, U.; Mikolajick, T. Incipient Ferroelectricity in Al-Doped HfO2 Thin Films. Adv. Funct. Mater. 2012, 22, 2412–2417. [Google Scholar] [CrossRef]
- Park, M.H.; Kim, H.J.; Kim, Y.J.; Moon, T.; Kim, K.D.; Hwang, C.S. Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1−xO2 films. Nano Energy 2015, 12, 131–140. [Google Scholar] [CrossRef]
- Xu, L.; Nishimura, T.; Shibayama, S.; Yajima, T.; Migita, S.; Toriumi, A. Kinetic pathway of the ferroelectric phase formation in doped HfO2 films. J. Appl. Phys. 2017, 122, 124104. [Google Scholar] [CrossRef]
- Schroeder, U.; Richter, C.; Park, M.H.; Schenk, T.; Pešić, M.; Hoffmann, M.; Fengler, F.P.G.; Pohl, D.; Rellinghaus, B.; Zhou, C.; et al. Lanthanum-Doped Hafnium Oxide: A Robust Ferroelectric Material. Inorg. Chem. 2018, 57, 2752–2765. [Google Scholar] [CrossRef]
- Hoffmann, M.; Schroeder, U.; Schenk, T.; Shimizu, T.; Funakubo, H.; Sakata, O.; Pohl, D.; Drescher, M.; Adelmann, C.; Materlik, R.; et al. Stabilizing the ferroelectric phase in doped hafnium oxide. J. Appl. Phys. 2015, 118, 072006. [Google Scholar] [CrossRef]
- Müller, J.; Schröder, U.; Böscke, T.S.; Müller, I.; Böttger, U.; Wilde, L.; Sundqvist, J.; Lemberger, M.; Kücher, P.; Mikolajick, T.; et al. Ferroelectricity in yttrium-doped hafnium oxide. J. Appl. Phys. 2011, 110, 114113. [Google Scholar] [CrossRef]
- Xu, L.; Nishimura, T.; Shibayama, S.; Yajima, T.; Migita, S.; Toriumi, A. Ferroelectric phase stabilization of HfO2 by nitrogen doping. Appl. Phys. Express 2016, 9, 091501. [Google Scholar] [CrossRef]
- Pesic, M.; Schroeder, U.; Slesazeck, S.; Mikolajick, T. Comparative Study of Reliability of Ferroelectric and Anti-Ferroelectric Memories. IEEE Trans. Device Mater. Reliab. 2018, 18, 154–162. [Google Scholar] [CrossRef]
- Goh, Y.; Hwang, J.; Lee, Y.; Kim, M.; Jeon, S. Ultra-thin Hf0.5Zr0.5O2 thin-film-based ferroelectric tunnel junction via stress induced crystallization. Appl. Phys. Lett. 2020, 117, 242901. [Google Scholar] [CrossRef]
- Saha, A.K.; Si, M.; Ni, K.; Datta, S.; Ye, P.D.; Gupta, S.K. Ferroelectric Thickness Dependent Domain Interactions in FEFETs for Memory and Logic: A Phase-field Model based Analysis. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 4.3.1–4.3.4. [Google Scholar] [CrossRef]
- Park, M.H.; Chung, C.; Schenk, T.; Richter, C.; Opsomer, K.; Detavernier, C.; Adelmann, C.; Jones, J.L.; Mikolajick, T.; Schroeder, U. Effect of Annealing Ferroelectric HfO2 Thin Films: In Situ, High Temperature X-Ray Diffraction. Adv. Electron. Mater. 2018, 4, 1800091. [Google Scholar] [CrossRef]
- Walke, A.M.; Popovici, M.I.; Banerjee, K.; Clima, S.; Kumbhare, P.; Desmet, J.; Meersschaut, J.; Bosch, G.V.D.; Delhougne, R.; Kar, G.S.; et al. Electrical Investigation of Wake-Up in High Endurance Fatigue-Free La and Y Doped HZO Metal–Ferroelectric–Metal Capacitors. IEEE Trans. Electron Devices 2022, 69, 4744–4749. [Google Scholar] [CrossRef]
- Weng, Z.; Qu, Y.; Lan, Z.; Liu, J.; Su, M.; Li, J.; Ding, Y.; Lee, C.; Zhao, L.; Zhao, Y. Wake-Up Free La-Doped HfO2-ZrO2 Ferroelectrics Achieved with an Atomic Layer-Specific Doping Technique. IEEE Electron Device Lett. 2022, 43, 1665–1668. [Google Scholar] [CrossRef]
- Kozodaev, M.G.; Chernikova, A.G.; Korostylev, E.V.; Park, M.H.; Khakimov, R.R.; Hwang, C.S.; Markeev, A.M. Mitigating wakeup effect and improving endurance of ferroelectric HfO2-ZrO2 thin films by careful La-doping. J. Appl. Phys. 2019, 125, 034101. [Google Scholar] [CrossRef]
- Popovici, M.; Walke, A.M.; Banerjee, K.; Ronchi, N.; Meersschaut, J.; Celano, U.; McMitchell, S.; Spampinato, V.; Franquet, A.; Favia, P.; et al. Ferroelectric La-Doped ZrO2/HfZrO2 Bilayer Stacks with Enhanced Endurance. Phys. Status Solidi (RRL)-Rapid Res. Lett. 2021, 15, 2100033. [Google Scholar] [CrossRef]
- Zeng, M.; Hu, Q.; Li, Q.; Liu, H.; Yan, S.; Gu, C.; Zhao, W.; Huang, R.; Wu, Y. First Demonstration of Annealing-Free Top Gate La:HZO-IGZO FeFET with Record Memory Window and Endurance. In Proceedings of the 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 9–13 December 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Chernikova, A.G.; Kozodaev, M.G.; Negrov, D.V.; Korostylev, E.V.; Park, M.H.; Schroeder, U.; Hwang, C.S.; Markeev, A.M. Improved Ferroelectric Switching Endurance of La-Doped Hf0.5Zr0.5O2 Thin Films. ACS Appl. Mater. Interfaces 2018, 10, 2701–2708. [Google Scholar] [CrossRef]
- Walke, A.M.; Popovici, M.I.; Sharifi, S.H.; Demir, E.C.; Puliyalil, H.; Bizindavyi, J.; Yasin, F.; Clima, S.; Fantini, A.; Belmonte, A.; et al. La Doped HZO-Based 3D-Trench Metal-Ferroelectric-Metal Capacitors with High-Endurance (>10¹²) for FeRAM Applications. IEEE Electron Device Lett. 2024, 45, 578–581. [Google Scholar] [CrossRef]
- Xu, K.; Wang, T.; Liu, Y.; Yu, J.; Liu, Y.; Li, Z.; Meng, J.; Zhu, H.; Sun, Q.; Zhang, D.W.; et al. La-Doped HZO (La:HZO) Ferroelectric Devices Toward High-Temperature Application. IEEE Trans. Electron Devices 2024, 71, 5375–5379. [Google Scholar] [CrossRef]
- Walke, A.M.; Clima, S.; I Popovici, M.; Van Houdt, J. Understanding Anti-ferroelectric Behavior and Wake-up in La Doped HZO Metal-FerroelectricMetal Capacitors Using Nucleation Limited Switching Model. In Proceedings of the 2024 IEEE European Solid-State Electronics Research Conference (ESSERC), Bruges, Belgium, 9–12 September 2024; pp. 565–568. [Google Scholar] [CrossRef]
- Mehmood, F.; Mikolajick, T.; Schroeder, U. Wake-Up Mechanisms in Ferroelectric Lanthanum-Doped Hf0.5Zr0.5O2 Thin Films. Phys. Status Solidi (A) 2020, 217, 2000281. [Google Scholar] [CrossRef]
- Umezawa, N.; Shiraishi, K.; Sugino, S.; Tachibana, A.; Ohmori, K.; Kakushima, K.; Iwai, H.; Chikyow, T.; Ohno, T.; Nara, Y.; et al. Suppression of oxygen vacancy formation in Hf-based high-k dielectrics by lanthanum incorporation. Appl. Phys. Lett. 2007, 91, 132904. [Google Scholar] [CrossRef]
- Jeong, J.; Han, Y.; Sohn, H. Effect of La doping on dielectric constant and tetragonality of ZrO2 thin films deposited by atomic layer deposition. J. Alloys Compd. 2022, 927, 166961. [Google Scholar] [CrossRef]
- Mehmood, F.; Hoffmann, M.; Lomenzo, P.D.; Richter, C.; Materano, M.; Mikolajick, T.; Schroeder, U. Bulk Depolarization Fields as a Major Contributor to the Ferroelectric Reliability Performance in Lanthanum Doped Hf0.5Zr0.5O2 Capacitors. Adv. Mater. Interfaces 2019, 6, 1901180. [Google Scholar] [CrossRef]
- Weng, Z.; Lan, Z.; Ding, Y.; Qu, Y.; Zhao, Y. Orthorhombic-I Phase and Related Phase Transitions: Mechanism of Superior Endurance (>1014) of HfZrO Anti-ferroelectrics for DRAM Applications. In Proceedings of the 2024 IEEE International Reliability Physics Symposium (IRPS), 14–18 April 2024; pp. P11.EM-1–P11.EM-6. [Google Scholar] [CrossRef]
- Hsiang, K.-Y.; Liao, C.-Y.; Liu, J.-H.; Wang, J.-F.; Chiang, S.-H.; Hsieh, F.-C.; Liang, H.; Lin, C.-Y.; Lou, Z.-F.; Hou, T.-H.; et al. Bilayer-Based Antiferroelectric HfZrO2 Tunneling Junction with High Tunneling Electroresistance and Multilevel Nonvolatile Memory. IEEE Electron Device Lett. 2021, 42, 1464–1467. [Google Scholar] [CrossRef]
- Li, J.; Zhou, J.; Wu, F.; Lee, C.; Zhao, Y. BEOL Compatible High-reliability La-doped ZrO2 Antiferroelectric Capacitor. In Proceedings of the Extended Abstracts of the 2024 International Conference on Solid State Devices and Materials, 1–4 September 2024. [Google Scholar] [CrossRef]
- Li, J.; Zhou, J.; Wu, F.; Weng, Z.; Huo, Y.; Chen, Z.; Chen, L.; Qu, Y.; Lee, C.H.; Zhao, Y. Wake-up free La-doped ZrO2 antiferroelectric capacitors. Jpn. J. Appl. Phys. 2024, 63, 12SP13. [Google Scholar] [CrossRef]
- Goh, Y.; Hwang, J.; Jeon, S. Excellent Reliability and High-Speed Antiferroelectric HfZrO2 Tunnel Junction by a High-Pressure Annealing Process and Built-In Bias Engineering. ACS Appl. Mater. Interfaces 2020, 12, 57539–57546. [Google Scholar] [CrossRef]
- Pesic, M.; Larcher, L.; Mikolajick, T.; Li, T.; Di Lecce, V.; Hoffmann, M.; Materano, M.; Richter, C.; Max, B.; Slesazeck, S.; et al. Built-In Bias Generation in Anti-Ferroelectric Stacks: Methods and Device Applications. IEEE J. Electron Devices Soc. 2018, 6, 1019–1025. [Google Scholar] [CrossRef]
- Pesic, M.; Hoffmann, M.; Richter, C.; Slesazeck, S.; Schroeder, U.; Mikolajick, T. Anti-ferroelectric-like ZrO2 non-volatile memory: Inducing non-volatility within state-of-the-art DRAM. In Proceedings of the 2017 17th Nonvolatile Memory Technology Symposium (NVMTS), Aachen, Germany, 30 August–1 September 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Pesic, M.; Knebel, S.; Hoffmann, M.; Richter, C.; Mikolajick, T.; Schroeder, U. How to make DRAM non-volatile? Anti-ferroelectrics: A new paradigm for universal memories. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 11.6.1–11.6.4. [Google Scholar] [CrossRef]
- Wang, X.-R.; Jiang, Y.-L.; Xie, Q.; Detavernier, C.; Ru, G.-P.; Qu, X.-P.; Li, B.-Z. Annealing effect on the metal gate effective work function modulation for the Al/TiN/SiO2/p-Si structure. Microelectron. Eng. 2011, 88, 573–577. [Google Scholar] [CrossRef]
- Pandey, R.K.; Sathiyanarayanan, R.; Kwon, U.; Narayanan, V.; Murali, K.V.R.M. Role of point defects and HfO2/TiN interface stoichiometry on effective work function modulation in ultra-scaled complementary metal–oxide–semiconductor devices. J. Appl. Phys. 2013, 114, 034505. [Google Scholar] [CrossRef]
- Li, Y.; Tang, X.; Xu, G.; Li, H.; He, S.; Hu, X.; Su, X.; Bai, W.; Lu, D.; Long, S. The Effects of Postdeposition Anneal and Postmetallization Anneal on Electrical Properties of TiN/ZrO2/TiN Capacitors. IEEE Trans. Electron Devices 2022, 70, 59–64. [Google Scholar] [CrossRef]
- Sathiyanarayanan, R.; Vaidya, D. Effective Work Function Computation of HfO2/TiN/W Bi-metal System: Role of Barrier-TiN. In Proceedings of the 2020 5th IEEE International Conference on Emerging Electronics (ICEE), New Delhi, India, 26–28 November 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Calzolari, A.; Catellani, A. Controlling the TiN Electrode Work Function at the Atomistic Level: A First Principles Investigation. IEEE Access 2020, 8, 156308–156313. [Google Scholar] [CrossRef]
- Kadoshima, M.; Matsuki, T.; Miyazaki, S.; Shiraishi, K.; Chikyo, T.; Yamada, K.; Aoyama, T.; Nara, Y.; Ohji, Y. Effective-Work-Function Control by Varying the TiN Thickness in Poly-Si/TiN Gate Electrodes for Scaled High-k CMOSFETs. IEEE Electron Device Lett. 2009, 30, 466–468. [Google Scholar] [CrossRef]
- Choi, K.; Lysaght, P.; Alsbareef, H.; Wen, H.-C.; Huffman, C.; Harris, R.; Luan, H.; Matthews, K.; Majhi, P.; Lee, B. Growth mechanism of ALD-TiN and the thickness dependence of work function. In Proceedings of the IEEE VLSI-TSA International Symposium on VLSI Technology, Hsinchu, Taiwan, 25–27 April 2005; pp. 103–104. [Google Scholar] [CrossRef]
- Choi, K.; Wen, H.-C.; Alshareef, H.; Harris, R.; Lysaght, P.; Luan, H.; Majhi, P.; Lee, B. The effect of metal thickness, overlayer and high-k surface treatment on the effective work function of metal electrode. In Proceedings of the 35th European Solid-State Device Research Conference, Grenoble, France, 12–16 September 2005; pp. 101–104. [Google Scholar] [CrossRef]
- Zhejiang Liryder Technologies Co., Ltd. Available online: https://www.liryder.com/en/ (accessed on 6 April 2025).
- Wang, Q.; Zhang, Y.; Yang, P.; Cao, R.; Liu, H.; Xu, H.; Liu, S.; Li, Q. Improved Symmetry of Ferroelectric Switching in HZO Based MFM Capacitors Enabled by High Pressure Annealing. IEEE J. Electron Devices Soc. 2022, 10, 1009–1014. [Google Scholar] [CrossRef]
- Wiemer, C.; Debernardi, A.; Lamperti, A.; Molle, A.; Salicio, O.; Lamagna, L.; Fanciulli, M. Influence of lattice parameters on the dielectric constant of tetragonal ZrO2 and La-doped ZrO2 crystals in thin films deposited by atomic layer deposition on Ge(001). Appl. Phys. Lett. 2011, 99, 232907. [Google Scholar] [CrossRef]
- Gaddam, V.; Das, D.; Jeon, S. Insertion of HfO2 Seed/Dielectric Layer to the Ferroelectric HZO Films for Heightened Remanent Polarization in MFM Capacitors. IEEE Trans. Electron Devices 2020, 67, 745–750. [Google Scholar] [CrossRef]
- Yuan, P.; Mao, G.-Q.; Cheng, Y.; Xue, K.-H.; Zheng, Y.; Yang, Y.; Jiang, P.; Xu, Y.; Wang, Y.; Wang, Y.; et al. Microscopic mechanism of imprint in hafnium oxide-based ferroelectrics. Nano Res. 2022, 15, 3667–3674. [Google Scholar] [CrossRef]
- Rabe, K.M.; Ahn, C.H.; Triscone, J.-M. Physics of ferroelectrics: A modern perspective. In Topics in Applied Physics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Chen, D.; Zhong, S.; Dong, Y.; Cui, T.; Liu, J.; Si, M.; Li, X. Antiferroelectric Phase Evolution in HfxZr1-xO2 Thin Film Toward High Endurance of Non-Volatile Memory Devices. IEEE Electron Device Lett. 2022, 43, 2065–2068. [Google Scholar] [CrossRef]
- Liu, C.-H.; Hsiang, K.-Y.; Li, Z.-X.; Chang, F.-S.; Lou, Z.-F.; Lee, J.-Y.; Liu, C.W.; Su, P.; Hou, T.-H.; Lee, M.-H. Nonvolatile and Volatile Memory Fusion of Antiferroelectric-like Hafnium–Zirconium Oxide for Multi-Bit Access and Endurance >1012 Cycles by Alternating Polarity Cycling Recovery and Spatially Resolved Evolution. ACS Appl. Mater. Interfaces 2025, 17, 14342–14349. [Google Scholar] [CrossRef]
- Pesic, M.; Hoffmann, M.; Richter, C.; Slesazeck, S.; Kampfe, T.; Eng, L.M.; Mikolajick, T.; Schroeder, U. Anti-ferroelectric ZrO2, an enabler for low power non-volatile 1T-1C and 1T random access memories. In Proceedings of the 2017 47th European Solid-state Device Research Conference (ESSDERC), Leuven, Belgium, 11–14 September 2017; pp. 160–163. [Google Scholar] [CrossRef]
- Toprasertpong, K.; Tahara, K.; Hikosaka, Y.; Nakamura, K.; Saito, H.; Takenaka, M.; Takagi, S. Low Operating Voltage, Improved Breakdown Tolerance, and High Endurance in Hf0.5Zr0.5O2 Ferroelectric Capacitors Achieved by Thickness Scaling Down to 4 nm for Embedded Ferroelectric Memory. ACS Appl. Mater. Interfaces 2022, 14, 51137–51148. [Google Scholar] [CrossRef]
- Kim, S.J.; Mohan, J.; Kim, H.S.; Lee, J.; Young, C.D.; Colombo, L.; Summerfelt, S.R.; San, T.; Kim, J. Low-voltage operation and high endurance of 5-nm ferroelectric Hf0.5Zr0.5O2 capacitors. Appl. Phys. Lett. 2018, 113, 182903. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Du, X.; Luo, Z.; Wang, Y.; Bai, W.; Su, X.; Shen, S.; Yin, Y.; Li, X. High endurance (>1012) via optimized polarization switching ratio for Hf0.5Zr0.5O2-based FeRAM. Appl. Phys. Lett. 2023, 122, 082901. [Google Scholar] [CrossRef]
- Yu, Z.; Saini, B.; Liao, P.J.; Chang, Y.K.; Hou, V.; Nien, C.H.; Shih, Y.C.; Yeong, S.H.; Afanas’Ev, V.; Huang, F.; et al. CeO2-Doped Hf0.5Zr0.5O2 Ferroelectrics for High Endurance Embedded Memory Applications. In Proceedings of the 2022 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Hsinchu, Taiwan, 18–21 April 2022; pp. 1–2. [Google Scholar] [CrossRef]
Structure | Films | Wake-Up | 2Ec (MV/cm) | 2Pr (µC/cm2) | Endurance (Cycles) | Ref. |
---|---|---|---|---|---|---|
NV–AFE | Hf0.25Zr0.75O2 | w/ | 1.5 | ~7 | >1 × 1012 | [50] |
NV–AFE | ZrO2/Al2O3/ZrO2 | w/o | 1.6 | 18 | 1 × 109 | [33] |
NV–AFE | HfO2/ZrO2 | w/ | / | / | 1 × 107 | [51] |
AFE | Hf0.2Zr0.8O2 | w/ | 4 | 8–16 | 1 × 1012 | [49] |
NV-AFE | ZrO2 | w/o | 1.4 | 12–18 | 1 × 1010 | [34] |
FE | Hf0.5Zr0.5O2 | w/ | 6 | 25 | 1 × 1010 | [52] |
FE | Hf0.5Zr0.5O2 | w/ | 1.6 | 5–20 | 1 × 1010 | [53] |
FE | Hf0.5Zr0.5O2 | w/ | 2 | 712 | >1 × 1012 | [54] |
FE | HZO/CeO2/HZO | w/ | 3 | 30 | 1 × 1011 | [55] |
NV–AFE | ZrO2/La2O3/ZrO2 | w/o | 1.5 | 22 | >1 × 1012 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhou, J.; Yan, W.; Dong, Z.; Huo, Y.; Lee, C.; Weng, Z.; Zhao, Y. Nonvolatile Applications and Reliability Investigation of La-Doped ZrO2 Antiferroelectric Capacitors. Electronics 2025, 14, 1794. https://doi.org/10.3390/electronics14091794
Li J, Zhou J, Yan W, Dong Z, Huo Y, Lee C, Weng Z, Zhao Y. Nonvolatile Applications and Reliability Investigation of La-Doped ZrO2 Antiferroelectric Capacitors. Electronics. 2025; 14(9):1794. https://doi.org/10.3390/electronics14091794
Chicago/Turabian StyleLi, Jianguo, Junliang Zhou, Wenchao Yan, Zibo Dong, Yuetong Huo, ChoongHyun Lee, Zeping Weng, and Yi Zhao. 2025. "Nonvolatile Applications and Reliability Investigation of La-Doped ZrO2 Antiferroelectric Capacitors" Electronics 14, no. 9: 1794. https://doi.org/10.3390/electronics14091794
APA StyleLi, J., Zhou, J., Yan, W., Dong, Z., Huo, Y., Lee, C., Weng, Z., & Zhao, Y. (2025). Nonvolatile Applications and Reliability Investigation of La-Doped ZrO2 Antiferroelectric Capacitors. Electronics, 14(9), 1794. https://doi.org/10.3390/electronics14091794