Novel Learning Framework with Generative AI X-Ray Images for Deep Neural Network-Based X-Ray Security Inspection of Prohibited Items Detection with You Only Look Once
Abstract
:1. Introduction
2. Proposed Approach
2.1. Framework on Learning with Generative AI X-Ray Images
- The impact of Gen AI images on detection accuracy.
- The model’s ability to generalize across real-world and synthetic Gen AI X-ray images.
2.2. Real-World X-Ray Image Dataset for Prohibited Items
2.3. Copy-Paste-Augmented Generative AI X-Ray Image Dataset for Prohibited Items
“X-ray image of a box containing a Prohibited Item. This image is in the style typically seen by airport security personnel.”
3. Results and Discussion
3.1. Performance Metrics and Setup
- Precision: Proportion of predicted positive classes that are actually positive, which is defined as .
- Recall: Proportion of actual positive instances that the model correctly identifies as positive, which is defined as .
- mAP50-95: A metric that averages the mean Average Precision (mAP) calculated at Intersection over Union (IoU) thresholds ranging from 0.5 to 0.95 in increments of 0.05. This metric includes higher IoU criteria compared to mAP50, thus requiring more accurate bounding boxes.
3.2. Evaluation and Performance Analysis
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akçay, S.; Kundegorski, M.E.; Devereux, M.; Breckon, T.P. Transfer learning using convolutional neural networks for object classification within X-ray baggage security imagery. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 1057–1061. [Google Scholar]
- Saavedra, D.; Banerjee, S.; Mery, D. Detection of threat objects in baggage inspection with X-ray images using deep learning. Neural Comput. Appl. 2021, 33, 7803–7819. [Google Scholar]
- Lee, J.N.; Cho, H.C. Development of artificial intelligence system for dangerous object recognition in X-ray baggage images. Trans. Korean Inst. Electr. Eng. 2020, 69, 1067–1072. [Google Scholar]
- Wei, Y.; Tao, R.; Wu, Z.; Ma, Y.; Zhang, L.; Liu, X. Occluded prohibited items detection: An X-ray security inspection benchmark and de-occlusion attention module. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 138–146. [Google Scholar]
- Tao, R.; Wei, Y.; Jiang, X.; Li, H.; Qin, H.; Wang, J.; Ma, Y.; Zhang, L.; Liu, X. Towards real-world X-ray security inspection: A high-quality benchmark and lateral inhibition module for prohibited items detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 10–17 October 2021; pp. 10923–10932. [Google Scholar]
- Zhao, C.; Zhu, L.; Dou, S.; Deng, W.; Wang, L. Detecting overlapped objects in X-ray security imagery by a label-aware mechanism. IEEE Trans. Inf. Forensics Secur. 2022, 17, 998–1009. [Google Scholar]
- Zhang, L.; Jiang, L.; Ji, R.; Fan, H. Pidray: A large-scale X-ray benchmark for real-world prohibited item detection. Int. J. Comput. Vis. 2023, 131, 3170–3192. [Google Scholar]
- Kim, E.; Lee, J.; Jo, H.; Na, K.; Moon, E.; Gweon, G.; Yoo, B.; Kyung, Y. SHOMY: Detection of Small Hazardous Objects using the You Only Look Once Algorithm. KSII Trans. Internet Inf. Syst. (TIIS) 2022, 16, 2688–2703. [Google Scholar]
- Liu, J.; Lin, T.H. A framework for the synthesis of X-ray security inspection images based on generative adversarial networks. IEEE Access 2023, 11, 63751–63760. [Google Scholar]
- Mery, D.; Riffo, V.; Zscherpel, U.; Mondragón, G.; Lillo, I.; Zuccar, I.; Lobel, H.; Carrasco, M. GDXray: The database of X-ray images for nondestructive testing. J. Nondestruct. Eval. 2015, 34, 42. [Google Scholar]
- Miao, C.; Xie, L.; Wan, F.; Su, C.; Liu, H.; Jiao, J.; Ye, Q. Sixray: A large-scale security inspection X-ray benchmark for prohibited item discovery in overlapping images. In Proceedings of the 2021 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2119–2128. [Google Scholar]
- Han, L.; Ma, C.; Liu, Y.; Jia, J.; Sun, J. SC-YOLOv8: A security check model for the inspection of prohibited items in X-ray images. Electronics 2023, 12, 4208. [Google Scholar] [CrossRef]
- Ma, B.; Jia, T.; Li, M.; Wu, S.; Wang, H.; Chen, D. Towards dual-view X-ray baggage inspection: A large-scale benchmark and adaptive hierarchical cross refinement for prohibited item discovery. IEEE Trans. Inf. Forensics Secur. 2024, 19, 3866–3878. [Google Scholar]
- Tao, R.; Wang, H.; Guo, Y.; Chen, H.; Zhang, L.; Liu, X.; Wei, Y.; Zhao, Y. Dual-view X-ray detection: Can AI detect prohibited items from dual-view X-ray images like humans? arXiv 2024, arXiv:2411.18082. [Google Scholar]
- Li, Y.; Zhang, C.; Sun, S.; Yang, G. X-ray detection of prohibited item method based on dual attention mechanism. Electronics 2023, 12, 3934. [Google Scholar] [CrossRef]
- Jing, B.; Duan, P.; Chen, L.; Du, Y. EM-YOLO: An X-ray prohibited-item-detection method based on edge and material information fusion. Sensors 2023, 23, 8555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, Z.; Yang, J. Attention-based prohibited item detection in X-ray images during security checking. IET Image Process. 2024, 18, 1119–1131. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Zhang, H.; Yang, J.; Zhao, Z. Data augmentation of X-ray images in baggage inspection based on generative adversarial networks. IEEE Access 2020, 8, 86536–86544. [Google Scholar]
- OpenAI. ChatGPT. 2024. Available online: https://chat.openai.com (accessed on 4 April 2024).
- Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; Anadkat, S.; et al. GPT-4 technical report. arXiv 2023, arXiv:2303.08774. [Google Scholar]
- Anil, R.; Dai, A.M.; Firat, O.; Johnson, M.; Lepikhin, D.; Passos, A.; Shakeri, S.; Taropa, E.; Bailey, P.; Chen, Z.; et al. Palm 2 technical report. arXiv 2023, arXiv:2305.10403. [Google Scholar]
- Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.-A.; Lacroix, T.; Roziere, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al. Llama: Open and efficient foundation language models. arXiv 2023, arXiv:2302.13971. [Google Scholar]
- Ramesh, A.; Pavlov, M.; Goh, G.; Gray, S.; Voss, C.; Radford, A.; Chen, M.; Sutskever, I. Zero-shot text-to-image generation. In Proceedings of the 38th International Conference on Machine Learning, Virtual Event, 18–24 July 2021; pp. 8821–8831. [Google Scholar]
- Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-resolution image synthesis with latent diffusion models. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 10684–10695. [Google Scholar]
- Andreoni, M.; Lunardi, W.T.; Lawton, G.; Thakkar, S. Enhancing autonomous system security and resilience with generative AI: A comprehensive survey. IEEE Access 2024, 12, 109470–109493. [Google Scholar] [CrossRef]
- Golda, A.; Mekonen, K.; Pandey, A.; Singh, A.; Hassija, V.; Chamola, V.; Sikdar, B. Privacy and security concerns in generative AI: A comprehensive survey. IEEE Access 2024, 12, 48126–48144. [Google Scholar] [CrossRef]
- Bird, J.J.; Lotfi, A. CIFAKE: Image Classification and Explainable Identification of AI-Generated Synthetic Images. IEEE Access 2024, 12, 15642–15650. [Google Scholar]
- Lee, Y.; Kang, J. Performance Analysis by the Number of Learning Images on Anti-Drone Object Detection System with YOLO. J. Korean Inst. Commun. Inf. Sci. 2024, 49, 356–360. [Google Scholar] [CrossRef]
- Ghiasi, G.; Cui, Y.; Srinivas, A.; Qian, R.; Lin, T.-Y.; Cubuk, E.D.; Le, Q.V.; Zoph, B. Simple copy-paste is a strong data augmentation method for instance segmentation. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2918–2928. [Google Scholar]
- Terven, J.; Córdova-Esparza, D.M.; Romero-González, J.A. A comprehensive review of YOLO architectures in computer vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLO. 2024. Available online: https://github.com/ultralytics/ultralytics (accessed on 31 January 2024).
- Sohan, M.; SaiRam, T.; RamiReddy, V.C. A review on yolov8 and its advancements. In Proceedings of the International Conference on Data Intelligence and Cognitive Informatics, Tirunelveli, India, 18–20 November 2024; pp. 529–545. [Google Scholar]
- Wang, A.; Yuan, P.; Wu, H.; Iwahori, Y.; Liu, Y. Improved YOLOv8 for Dangerous Goods Detection in X-ray Security Images. Electronics 2024, 13, 3238. [Google Scholar] [CrossRef]
- Fan, J.; Haji Salam, M.S.B.; Rong, X.; Han, Y.; Yang, J.; Zhang, J. Peach Fruit Thinning Image Detection Based on Improved YOLOv8 and Data Enhancement Techniques. IEEE Access 2024, 12, 191199–191218. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, X.; Liu, Z.; Yu, P.; Yang, M. ESD-YOLOv8: An Efficient Solar Cell Fault Detection Model Based on YOLOv8. IEEE Access 2024, 12, 138801–138815. [Google Scholar]
- Mao, M.; Lee, A.; Hong, M. Efficient Fabric Classification and Object Detection Using YOLOv10. Electronics 2024, 13, 3840. [Google Scholar] [CrossRef]
- AI Hub. Available online: https://aihub.or.kr (accessed on 31 January 2024).
- OpenAI. DALL · E 3 System Card. 2023. Available online: https://openai.com/research/dall-e-3-system-card (accessed on 4 April 2024).
- Microsoft Copilot. Copilot. 2023. Available online: https://copilot.microsoft.com/ (accessed on 4 April 2024).
- Tzutalin. LabelImg. 2015. Available online: https://github.com/HumanSignal/labelImg (accessed on 4 April 2024).
- Conrad, R. Copy-Paste-Aug. 2020. Available online: https://github.com/conradry/copy-paste-aug (accessed on 5 December 2024).
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [Google Scholar]
- Thielen, N.; Rachinger, B.; Schröder, F.; Preitschaft, A.; Meier, S.; Seidel, R. Comparative Study on Different Methods to Generate Synthetic Data for the Classification of THT Solder Joints. In Proceedings of the 1st International Conference on Production Technologies and Systems for E-Mobility (EPTS), Bamberg, Germany, 5–6 June 2024; pp. 1–6. [Google Scholar]
- Singh, K.; Navaratnam, T.; Holmer, J.; Schaub-Meyer, S.; Roth, S. Is synthetic data all we need? benchmarking the robustness of models trained with synthetic images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 2505–2515. [Google Scholar]
- Paproki, A.; Salvado, O.; Fookes, C. Synthetic data for deep learning in computer vision & medical imaging: A means to reduce data bias. ACM Comput. Surv. 2024, 56, 271. [Google Scholar]
Predicted Class | |||
---|---|---|---|
Positive | Negative | ||
Actuall class | Positive | TP | FN |
Negative | FP | TF |
Component | Specification |
---|---|
OS | Windows 11 |
CPU | Intel i9 139006 (Santa Clara, CA, USA) |
RAM | 64 GB |
Graphics | NVIDIA RTX 4080 SUPER (Santa Clara, CA, USA) |
VRAM | 16 GB |
DNN Model | YOLOv8.2.42 |
Number of Images | Train | Valid | Test |
---|---|---|---|
Real-World | 35,850 | 7680 | 7680 |
Non-Copy-Paste Augmented Gen AI | 300 | 60 | 60 |
Copy-Paste Augmented Gen AI | 300 | 60 | 60 |
YOLOv8 | Real-World | NC-Gen AI/C-Gen AI |
---|---|---|
Model 1/4 | 1000 | / |
Model 2/5 | 10,000 | / |
Model 3/6 | 35,850 (All) | / |
Number of Training Gen AI X-Ray Images | 0 | 30 | 60 | 120 | 180 | 240 | 300 | |
---|---|---|---|---|---|---|---|---|
Real-world X-ray image test | Model 1 | 0.733 | 0.729 | 0.736 | 0.742 | 0.734 | 0.737 | 0.719 |
Model 2 | 0.887 | 0.884 | 0.893 | 0.891 | 0.892 | 0.889 | 0.887 | |
Model 3 | 0.946 | 0.949 | 0.948 | 0.950 | 0.952 | 0.952 | 0.953 | |
Model 4 | 0.733 | 0.734 | 0.739 | 0.729 | 0.742 | 0.733 | 0.739 | |
Model 5 | 0.887 | 0.885 | 0.891 | 0.889 | 0.888 | 0.884 | 0.883 | |
Model 6 | 0.946 | 0.950 | 0.949 | 0.952 | 0.948 | 0.948 | 0.952 | |
NC-Gen AI X-ray image test | Model 1 | 0.074 | 0.857 | 0.922 | 0.932 | 0.957 | 0.939 | 0.954 |
Model 2 | 0.345 | 0.702 | 0.847 | 0.873 | 0.918 | 0.927 | 0.939 | |
Model 3 | 0.004 | 0.677 | 0.881 | 0.918 | 0.945 | 0.921 | 0.903 | |
Model 4 | 0.074 | 0.653 | 0.856 | 0.944 | 0.960 | 0.965 | 0.976 | |
Model 5 | 0.345 | 0.544 | 0.777 | 0.932 | 0.950 | 0.971 | 0.960 | |
Model 6 | 0.004 | 0.692 | 0.850 | 0.873 | 0.906 | 0.956 | 0.962 | |
C-Gen AI X-ray image test | Model 1 | 0.230 | 0.638 | 0.669 | 0.718 | 0.753 | 0.791 | 0.792 |
Model 2 | 0.130 | 0.413 | 0.621 | 0.636 | 0.693 | 0.765 | 0.766 | |
Model 3 | 0.523 | 0.561 | 0.536 | 0.692 | 0.711 | 0.715 | 0.681 | |
Model 4 | 0.230 | 0.544 | 0.782 | 0.920 | 0.910 | 0.937 | 0.914 | |
Model 5 | 0.130 | 0.597 | 0.697 | 0.795 | 0.900 | 0.909 | 0.905 | |
Model 6 | 0.523 | 0.586 | 0.671 | 0.771 | 0.828 | 0.848 | 0.893 |
Number of Training Gen AI X-Ray Images | 0 | 30 | 60 | 120 | 180 | 240 | 300 | |
---|---|---|---|---|---|---|---|---|
Real-world X-ray image test | Model 1 | 0.634 | 0.634 | 0.636 | 0.638 | 0.641 | 0.640 | 0.646 |
Model 2 | 0.834 | 0.837 | 0.832 | 0.831 | 0.830 | 0.835 | 0.835 | |
Model 3 | 0.922 | 0.920 | 0.921 | 0.918 | 0.917 | 0.916 | 0.915 | |
Model 4 | 0.634 | 0.625 | 0.631 | 0.623 | 0.627 | 0.627 | 0.628 | |
Model 5 | 0.834 | 0.837 | 0.832 | 0.831 | 0.831 | 0.833 | 0.832 | |
Model 6 | 0.922 | 0.918 | 0.918 | 0.917 | 0.921 | 0.921 | 0.910 | |
NC-Gen AI X-ray image test | Model 1 | 0.040 | 0.702 | 0.792 | 0.841 | 0.838 | 0.900 | 0.896 |
Model 2 | 0.058 | 0.571 | 0.734 | 0.806 | 0.839 | 0.829 | 0.841 | |
Model 3 | 0.154 | 0.525 | 0.745 | 0.791 | 0.805 | 0.843 | 0.876 | |
Model 4 | 0.040 | 0.625 | 0.814 | 0.950 | 0.975 | 0.994 | 0.999 | |
Model 5 | 0.058 | 0.548 | 0.758 | 0.865 | 0.929 | 0.958 | 0.971 | |
Model 6 | 0.154 | 0.485 | 0.708 | 0.897 | 0.980 | 0.989 | 0.999 | |
C-Gen AI X-ray image test | Model 1 | 0.038 | 0.392 | 0.439 | 0.544 | 0.579 | 0.574 | 0.580 |
Model 2 | 0.039 | 0.289 | 0.354 | 0.428 | 0.474 | 0.448 | 0.509 | |
Model 3 | 0.008 | 0.276 | 0.430 | 0.440 | 0.468 | 0.465 | 0.503 | |
Model 4 | 0.038 | 0.485 | 0.676 | 0.769 | 0.817 | 0.830 | 0.870 | |
Model 5 | 0.039 | 0.393 | 0.505 | 0.716 | 0.736 | 0.804 | 0.832 | |
Model 6 | 0.008 | 0.330 | 0.486 | 0.655 | 0.748 | 0.804 | 0.835 |
Number of Training Gen AI X-Ray Images | 0 | 30 | 60 | 120 | 180 | 240 | 300 | |
---|---|---|---|---|---|---|---|---|
Real-world X-ray image test | Model 1 | 0.539 | 0.539 | 0.542 | 0.547 | 0.548 | 0.549 | 0.550 |
Model 2 | 0.769 | 0.770 | 0.769 | 0.769 | 0.770 | 0.770 | 0.770 | |
Model 3 | 0.861 | 0.860 | 0.861 | 0.860 | 0.861 | 0.861 | 0.861 | |
Model 4 | 0.539 | 0.537 | 0.538 | 0.534 | 0.540 | 0.535 | 0.538 | |
Model 5 | 0.769 | 0.770 | 0.769 | 0.767 | 0.767 | 0.767 | 0.767 | |
Model 6 | 0.861 | 0.860 | 0.860 | 0.859 | 0.861 | 0.860 | 0.860 | |
NC-Gen AI X-ray image test | Model 1 | 0.001 | 0.511 | 0.700 | 0.823 | 0.859 | 0.885 | 0.888 |
Model 2 | 0.002 | 0.399 | 0.586 | 0.663 | 0.712 | 0.791 | 0.810 | |
Model 3 | 0.001 | 0.436 | 0.716 | 0.799 | 0.804 | 0.826 | 0.837 | |
Model 4 | 0.001 | 0.449 | 0.650 | 0.849 | 0.918 | 0.934 | 0.956 | |
Model 5 | 0.002 | 0.318 | 0.552 | 0.709 | 0.775 | 0.872 | 0.898 | |
Model 6 | 0.001 | 0.417 | 0.673 | 0.806 | 0.876 | 0.898 | 0.934 | |
C-Gen AI X-ray image test | Model 1 | 0.003 | 0.217 | 0.293 | 0.419 | 0.430 | 0.449 | 0.478 |
Model 2 | 0.004 | 0.134 | 0.201 | 0.247 | 0.288 | 0.337 | 0.358 | |
Model 3 | 0.001 | 0.146 | 0.252 | 0.321 | 0.324 | 0.354 | 0.339 | |
Model 4 | 0.003 | 0.263 | 0.439 | 0.637 | 0.704 | 0.759 | 0.783 | |
Model 5 | 0.004 | 0.178 | 0.296 | 0.452 | 0.544 | 0.637 | 0.687 | |
Model 6 | 0.001 | 0.207 | 0.353 | 0.501 | 0.602 | 0.659 | 0.699 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Kang, J. Novel Learning Framework with Generative AI X-Ray Images for Deep Neural Network-Based X-Ray Security Inspection of Prohibited Items Detection with You Only Look Once. Electronics 2025, 14, 1351. https://doi.org/10.3390/electronics14071351
Kim D, Kang J. Novel Learning Framework with Generative AI X-Ray Images for Deep Neural Network-Based X-Ray Security Inspection of Prohibited Items Detection with You Only Look Once. Electronics. 2025; 14(7):1351. https://doi.org/10.3390/electronics14071351
Chicago/Turabian StyleKim, Dongsik, and Jinho Kang. 2025. "Novel Learning Framework with Generative AI X-Ray Images for Deep Neural Network-Based X-Ray Security Inspection of Prohibited Items Detection with You Only Look Once" Electronics 14, no. 7: 1351. https://doi.org/10.3390/electronics14071351
APA StyleKim, D., & Kang, J. (2025). Novel Learning Framework with Generative AI X-Ray Images for Deep Neural Network-Based X-Ray Security Inspection of Prohibited Items Detection with You Only Look Once. Electronics, 14(7), 1351. https://doi.org/10.3390/electronics14071351