High-Performance Acousto-Optic Modulators for Improving the Recognition Accuracy of Weak Microwave Signals by Radio Frequency Identification Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Theoretical
2.2. Simulation
2.3. Fabrication
3. Results
3.1. Optical Testing
3.1.1. Insertion Loss
3.1.2. Near-Field Mode
3.2. Comprehensive Testing of Acousto-Optic Modulator Performance
3.2.1. S Parameter Testing of IDT and FEUDT
3.2.2. Acousto-Optic Diffraction Efficiency Testing of FEUDT and IDT
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, R.; Xiang, X.; Xie, S.; Jiang, P. Sensing system for mixed inorganic salt solution based on improved double label coupling rfid. IEEE Sens. J. 2023, 23, 13565–13574. [Google Scholar] [CrossRef]
- Feng, R.; Chang, Y.; Mao, L.; Li, J. Liquid pressure sensing system with coupling RFID and HMM based on distance measurement. IEEE Sens. J. 2020, 21, 1051–1058. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, W.; Xing, C.; Zhao, N.; Al-Dhahir, N.; Karagiannidis, G.K.; Yang, X. Intelligent integrated sensing and communication: A survey. Sci. China Inf. Sci. 2025, 68, 131301. [Google Scholar] [CrossRef]
- Beller, J.; Shao, L. Acousto-optic modulators integrated on-chip. Light Sci. Appl. 2022, 11, 240. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Yang, Z.; Zhou, W.; Wen, M.; Feng, T.; Zeng, S.; Liu, D.; Li, H.; Pan, J.; Zhu, N.; et al. Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides. Light Sci. Appl. 2022, 11, 145. [Google Scholar] [CrossRef] [PubMed]
- Dakss, M.L.; Kuhn, L.; Heidrich, P.F.; Scott, B.A. Grating Coupler for Efficient Excitation of Optical Guided Waves in Thin Films. Appl. Phys. Lett. 1970, 16, 523–525. [Google Scholar] [CrossRef]
- Liwiński, A. Acousto-Optics and its Perspectives in Research and Applications. Ultrasonics 1990, 28, 195–213. [Google Scholar] [CrossRef]
- Feng, R.; Wang, J.; Wu, W.; Liu, S.; Liu, A.; Xie, S. Saturated load forecasting based on improved logistic regression and affinity propagation. Electr. Power Syst. Res. 2024, 237, 110953. [Google Scholar] [CrossRef]
- Uchida, N.; Niizeki, N. Acoustooptic Deflection Materials and Techniques. Proc. IEEE 1973, 61, 1073–1092. [Google Scholar] [CrossRef]
- Lean, E.G.; White, J.M.; Wilkinson, C.D. Thin-Film Acoustooptic Devices. Proc. IEEE 1976, 64, 779–788. [Google Scholar] [CrossRef]
- Schmidt, R.V. II. Acoustooptic Interactions Between Guided Optical Waves and Acoustic Surface Waves. IEEE Trans. Sonics Ultrason. 1976, 23, 22–32. [Google Scholar] [CrossRef]
- Donley, E.A.; Heavner, T.P.; Levi, F.; Tataw, M.O.; Jefferts, S.R. Double-Pass Acousto-Optic Modulator System. Rev. Sci. Instruments 2005, 76, 571–683. [Google Scholar] [CrossRef]
- Layer, H.P. Acoustooptic Modulator Intensity Servo. Appl. Opt. 1979, 18, 2947. [Google Scholar] [CrossRef]
- Sapriel, J.; Charissoux, D.; Voloshinov, V.; Molchanov, V. Tunable Acoustooptic Filters and Equalizers for Wdm Applications. J. Light. Technol. 2002, 20, 892–899. [Google Scholar] [CrossRef]
- Chang, I.C. Tunable Acousto-Optic Filters-an Overview. Proc. SPIE-Int. Soc. Opt. Eng. 1976, 16, 165455. [Google Scholar] [CrossRef]
- Culverhouse, D.O.; Birks, T.A.; Farwell, S.G.; Ward, J.; Russell, P.S. 40-Mhz All-Fiber Acoustooptic Frequency Shifter. IEEE Photonics Technol. Lett. 2002, 8, 1636–1637. [Google Scholar] [CrossRef]
- Risk, W.P.; Youngquist, R.C.; Kino, G.S.; Shaw, H.J. Acousto-Optic Frequency Shifting in Birefringent Fiber. Opt. Lett. 1984, 9, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Li, J.; Xie, S.; Mao, X. Efficient Training Method for Memristor-Based Array Using 1T1M Synapse. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 2410–2414. [Google Scholar] [CrossRef]
- Pinnow, D.A.; Van Uitert, L.G.; Warner, A.W.; Bonner, W.A. Lead molybdate A melt-grown crystal with a high figure of merit for acousto-optic device applications. Appl. Phys. Lett. 1969, 15, 83–86. [Google Scholar] [CrossRef]
- Tsai, C.S.; Nguyen, L.T.; Yao, S.K.; Alhaider, M.A. High-performance Acoustooptic Guidedlightbeam Device Using Two Tilting Surface Acoustic Waves. Appl. Phys. Lett. 1975, 26, 140–142. [Google Scholar] [CrossRef]
- De Lima, M.M.; Beck, M.; Hey, R.; Santos, P.V. Compact Mach-Zehnder Acousto-Optic Modulator. Appl. Phys. Lett. 2006, 89, 35. [Google Scholar] [CrossRef]
- Duehring, M.B.; Sigmund, O. Improving the Acousto-Optical Interaction in a Mach-Zehnder Interferometer. J. Appl. Phys. 2009, 105, 83529. [Google Scholar] [CrossRef]
- Chen, T. Guided-Wave Acoustooptic Bragg Modulators for Wide-Band Integrated Optic Communications and Signal Processing (Invited Paper). IEEE Trans. Circuits Syst. 2003, 26, 1072–1098. [Google Scholar] [CrossRef]
- Cai, L.; Mahmoud, A.; Khan, M.; Mahmoud, M.; Mukherjee, T.; Bain, J.; Piazza, G. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photon. Res. 2019, 7, 1003–1013. [Google Scholar] [CrossRef]
- Khan, M.S.; Mahmoud, A.; Cai, L.; Mahmoud, M.; Mukherjee, T.; Bain, J.A.; Piazza, G. Extraction of elastooptic coefficient of thin-Film arsenic trisulfide using a Mach–Zehnder acousto-optic modulator on lithium niobate. J. Light. Technol. 2020, 38, 2053–2059. [Google Scholar] [CrossRef]
- Feng, R.; Li, Z.; Wang, Q.; Huang, J. An ADMM-Based Optimization Method for URLLC-Enabled UAV Relay System. IEEE Wirel. Commun. Lett. 2022, 11, 1123–1127. [Google Scholar] [CrossRef]
- Li, H.; Florez, O.; Pan, B.; Madiot, G.; Torres, C.M.S.; Li, M. Chapter Fourteen—Electromechanical Brillouin Scattering; Eggleton, B.J., Steel, M.J., Poulton, C.G., Eds.; Semiconductors and Semimetals; Elsevier: Amsterdam, The Netherlands, 2022; Volume 110. [Google Scholar]
- Yamanouchi, K.; Furuyashiki, H. New Low-Loss Saw Filter Using Internal Floating Electrode Reflection Types of Single-Phase Unidirectional Transducer. Electron. Lett. 1984, 20, 989–990. [Google Scholar] [CrossRef]
- Kodama, T.; Kawabata, H.; Sato, H.; Yasuhara, Y. Design of low–loss saw filters employing distributed acoustic reflection transducers. Electron. Commun. Jpn. Part II Electron. 1987, 70, 32–44. [Google Scholar] [CrossRef]
- Morgan, D.P. Investigation of novel floating-electrode unidirectional SAW transducers (FEUDT’s). In Proceedings of the IEEE Ultrasonics Symposium, Proceedings, An International Symposium, San Juan, PR, USA, 22–25 October 2000; pp. 15–19. [Google Scholar]
- Morgan, D.P. Quasi-static analysis of floating-electrode unidirectional SAW transducers (FEUDT’s). In Proceedings of the 1999 IEEE Ultrasonics Symposium, Proceedings. International Symposium (Cat. No. 99CH37027), Piscataway, NJ, USA, 17–20 October 1999; pp. 107–111. [Google Scholar]
- Pchel’nikov, Y.N.; Annenkov, V.V.; Elizarov, A.A.; Fadeev, A.V. Primary measuring transducers based on retardation systems. Meas. Tech. 1994, 37, 506–510. [Google Scholar] [CrossRef]
- Luo, X.; Gu, Z.; Wang, C.; Fan, C.; Zhang, W. Large-Bandwidth Lithium Niobate Electro-Optic Modulator for Frequency-Division Multiplexing RFID Systems. Electronics 2024, 13, 5054. [Google Scholar] [CrossRef]
- Priyanka Joshi, S.D.; Panwar, B.S. An Iterative Approach to Design a Saw Filter Having Desired Response. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 1422–1426. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.P.; Zhgoon, S.; Shvetsov, A. One-Port Saw Resonators Using Natural Spudt Substrates. In Proceedings of the IEEE Ultrasonics Symposium Proceedings 2005, Rotterdam, The Netherlands, 18–21 September 2005. [Google Scholar]
- Feng, Y.; Li, W.; Yu, J. Analysis of Polarization Diffraction Characteristics of acousto-optic modulator. J. Xi ’an Technol. Univ. 2013, 33, 4. [Google Scholar]
References | Electrode Structure | Drive Power | Diffractive Efficiency |
---|---|---|---|
1969 [19] | IDT | 1 W | 50% |
1974 [20] | Bent IDT | 1.4 W | 50% |
1997 [21] | Buried-type IDT | - | 40% |
2009 [22] | Dual-electrode IDT | - | 0–8% |
Waveguide Number | Output Power | Insertion Loss | Extinction Ratio |
---|---|---|---|
IDT-L | 53.64 W | 11.16 dB | 38.41 dB |
IDT-R | 62.17 W | 10.52 dB | 38.57 dB |
FEUDT-L | 93.06 W | 8.76 dB | 37.53 dB |
FEUDT-R | 93.67 W | 8.73 dB | 38.60 dB |
Electrode Structure | Simulation | Actual Measurement | |
---|---|---|---|
IDT | 134.06 MHz | 133.2 MHz | 0.86 MHz |
FEUDT | 141.45 MHz | 141.2 MHz | 0.25 MHz |
Serial Number | IDT-L | IDT-R | FEUDT-L | FEUDT-R |
---|---|---|---|---|
Drive power | 0.84 W | 0.84 W | 0.57 W | 0.57 W |
Po-off | 53.64 W | 70.66 W | 92.40 W | 88.38 W |
Po-on | 24.55 W | 37.40 W | 75.98 W | 37.71 W |
Diffractive efficiency | 45.90% | 47.07% | 17.78% | 61.72% |
References | Electrode Structure | Drive Power | Diffractive Efficiency |
---|---|---|---|
1969 [19] | IDT | 1 W | 50% |
1974 [20] | Bent IDT | 1.4 W | 50% |
1997 [21] | Buried-type IDT | - | 40% |
2009 [22] | Dual-electrode IDT | - | 0–8% |
Design of this article 1 | IDT | 0.84 W | 47.07% |
Design of this article 2 | FEUDT | 0.57 W | 61.72% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Luo, X.; Rao, Q.; Jiang, P. High-Performance Acousto-Optic Modulators for Improving the Recognition Accuracy of Weak Microwave Signals by Radio Frequency Identification Systems. Electronics 2025, 14, 658. https://doi.org/10.3390/electronics14040658
Zhang W, Luo X, Rao Q, Jiang P. High-Performance Acousto-Optic Modulators for Improving the Recognition Accuracy of Weak Microwave Signals by Radio Frequency Identification Systems. Electronics. 2025; 14(4):658. https://doi.org/10.3390/electronics14040658
Chicago/Turabian StyleZhang, Weijia, Xueting Luo, Qiancheng Rao, and Peng Jiang. 2025. "High-Performance Acousto-Optic Modulators for Improving the Recognition Accuracy of Weak Microwave Signals by Radio Frequency Identification Systems" Electronics 14, no. 4: 658. https://doi.org/10.3390/electronics14040658
APA StyleZhang, W., Luo, X., Rao, Q., & Jiang, P. (2025). High-Performance Acousto-Optic Modulators for Improving the Recognition Accuracy of Weak Microwave Signals by Radio Frequency Identification Systems. Electronics, 14(4), 658. https://doi.org/10.3390/electronics14040658