Analysis of Automotive Lidar Corner Cases Under Adverse Weather Conditions
Abstract
1. Introduction
2. Literature Review
2.1. Mathematical Models for Lidar Applications
2.2. Extinction and Backscattering Coefficient
2.3. Scattering on an Object Surface
3. Methodology
3.1. General Setup of the Simulation
3.2. Definition of Used Corner Cases
- Layer 1: Road Level: Geometry, topology, and condition of the road.
- Layer 2: Traffic Infrastructure: Road furniture, signs, and traffic guidance systems.
- Layer 3: Temporal Modifications: Temporary changes to layers 1 and 2 (e.g., wet surface).
- Layer 4: Moving Objects: Other traffic participants (vehicles, pedestrians, etc.).
- Layer 5: Environmental Conditions: Weather, light conditions.
- Layer 6: Digital Information: Communication between vehicles and infrastructure (V2X) or map data.
3.3. Research Questions
3.4. Experiment 1: Impact of Reflection Characteristics
3.5. Experiment 2: Performance of Detection Algorithm During Simple Corner Case
3.6. Evaluation of Expected Time to Collision in Corner Cases
- At night;
- During low ambient temperatures;
- During precipitation;
- During fog.
4. Results
4.1. Experiment 1: Impact of Reflection Characteristics
4.1.1. Rain
4.1.2. Fog
4.1.3. Snow
4.1.4. Dust
4.1.5. PM2.5
4.2. Experiment 2: Performance of Detection Algorithm During Simple Corner Case
4.2.1. Case Study for Fog
4.2.2. Analysis for Rain, Dust Storms, Polluted Air, and Snow
4.3. Evaluation of Expected Time to Collision in Corner Cases
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- SAE. Summary of Sae International’s Capability Levels for Aerospace and Automotive Applications; Technical Report; SAE: Warrendale, PA, USA, 2018. [Google Scholar]
- Vargas, J.; Alsweiss, S.; Toker, O.; Razdan, R.; Santos, J. An overview of autonomous vehicles sensors and their vulnerability to weather conditions. Sensors 2021, 21, 5397. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, W.; Zhu, B.; Zhang, P.; Hu, Z.; Meng, J. Corner Case Dataset for Autonomous Vehicle Testing Based on Naturalistic Driving Data. Smart Cities 2025, 8, 129. [Google Scholar] [CrossRef]
- Bolte, J.A.; Bar, A.; Lipinski, D.; Fingscheidt, T. Towards corner case detection for autonomous driving. In Proceedings of the IEEE Intelligent Vehicles Symposium, Paris, France, 9–12 June 2019; pp. 438–445. [Google Scholar] [CrossRef]
- Bogdoll, D.; Breitenstein, J.; Heidecker, F.; Bieshaar, M.; Sick, B.; Fingscheidt, T.; Zöllner, J.M. Description of Corner Cases in Automated Driving: Goals and Challenges. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021. [Google Scholar] [CrossRef]
- Chipengo, U.; Krenz, P.M.; Carpenter, S. From antenna design to high fidelity, full physics automotive radar sensor corner case simulation. Model. Simul. Eng. 2018, 2018, 4239725. [Google Scholar] [CrossRef]
- German Aerospace Center (DLR). Pegasus Method; German Aerospace Center (DLR): Köln, Germany, 2020. [Google Scholar]
- Koopman, P.; Fratrik, F. How Many Operational Design Domains, Objects, and Events? In Proceedings of the Safe AI, Honolulu, HI, USA, 27–28 January 2019.
- Kutila, M.; Pyykonen, P.; Holzhuter, H.; Colomb, M.; Duthon, P. Automotive LiDAR performance verification in fog and rain. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018. [Google Scholar] [CrossRef]
- Heinzler, R.; Schindler, P.; Seekircher, J.; Ritter, W.; Stork, W. Weather Influence and Classification with Automotive Lidar Sensors. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1527–1534. [Google Scholar] [CrossRef]
- Montalban, K.; Reymann, C.; Atchuthan, D.; Dupouy, P.E.; Riviere, N.; Lacroix, S. A quantitative analysis of point clouds from automotive lidars exposed to artificial rain and fog. Atmosphere 2021, 12, 738. [Google Scholar] [CrossRef]
- Hahner, M.; Sakaridis, C.; Dai, D.; Gool, L.V.; Be, L.V.; Zürich, E. Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021. [Google Scholar] [CrossRef]
- Hahner, M.; Sakaridis, C.; Bijelic, M.; Heide, F.; Yu, F.; Dai, D.; Gool, L.V.; Zürich, E. LiDAR Snowfall Simulation for Robust 3D Object Detection. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Kilic, V.; Hegde, D.; Sindagi, V.; Cooper, A.B.; Foster, M.A.; Patel, V.M. Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of Adverse Weather Conditions for 3D Object Detection. In Proceedings of the ICASSP 2025—2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Hyderabad, India, 6–11 April 2025. [Google Scholar]
- Schicktanz, C.; Gimm, K. Detection and analysis of corner case scenarios at a signalized urban intersection. Accid. Anal. Prev. 2025, 210, 107838. [Google Scholar] [CrossRef] [PubMed]
- Alavi, B.; Illing, T.; Campean, F.; Spencer, P.; Abdullatif, A. Quantifying Automotive Lidar System Uncertainty in Adverse Weather: Mathematical Models and Validation. Appl. Sci. 2025, 15, 8191. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Ros, G.; Codevilla, F.; López, A.; Koltun, V. CARLA: An Open Urban Driving Simulator. arXiv 2017, arXiv:1711.03938. [Google Scholar] [CrossRef]
- Macenski, S.; Foote, T.; Gerkey, B.; Lalancette, C.; Woodall, W. Robot Operating System 2: Design, architecture, and uses in the wild. Sci. Robot. 2022, 7, eabm6074. [Google Scholar] [CrossRef] [PubMed]
- OpenPCDet Development Team. OpenPCDet: An Open-source Toolbox for 3D Object Detection from Point Clouds. 2020. Available online: https://github.com/open-mmlab/OpenPCDet (accessed on 16 October 2025).
- Evans, B. On the Inversion of the Lidar Equation; Department of National Defence Canada: Ottawa, ON, Canada, 1984. [Google Scholar]
- Rasshofer, R.H.; Spies, M.; Spies, H. Influences of weather phenomena on automotive laser radar systems. Adv. Radio Sci. 2011, 9, 49–60. [Google Scholar] [CrossRef]
- ISO 28902-1:2012; Air Quality—Environmental Meteorology—Part 1: Ground-Based Remote Sensing of Visual Range by Lidar. ISO: Geneva, Switzerland, 2012.
- Carbonneau, T.H.; Wisely, D.R. Opportunities and challenges for optical wireless: The competitive advantage of free space telecommunications links in today’s crowded marketplace. Wirel. Technol. Syst. Millim.-Wave Opt. 1998, 3232, 119–128. [Google Scholar] [CrossRef]
- Naboulsi, M.A.; Sizun, H.; Gebhart, M.; Leitgeb, E.; Muhammad, S.S.; Flecker, B.; Chlestil, C. Measured and predicted light attenuation in dense coastal upslope fog at 650, 850, and 950 nm for free-space optics applications. Opt. Eng. 2008, 47, 036001. [Google Scholar] [CrossRef]
- ITU Radiocommunication Assembly. Prediction Methods Required for the Design of Terrestrial Free-Space Optical Links; International telecommunication Union: Geneva, Switzerland, 2007. [Google Scholar]
- Tonvall, D. Study of Reflective and Polarization Properties of Objects Found in Automotive LiDAR Applications. Ph.D. Thesis, Umeå University, Umeå, Sweden, 2020. [Google Scholar]
- Seubert, C.M. IR Reflectivity of Paint: Autonomy and CO2 Emissions; Technical Report; Ford Motor Company: Dearborn, MI, USA, 2018. [Google Scholar]
- Shung, J.L.W.; Hibbard, P.; Vijay, R.; Kin, L.A.H.; de Boer, N. White paper on LiDAR performance against selected Automotive Paints. arXiv 2023, arXiv:2309.01346. [Google Scholar] [CrossRef]
- Muckenhuber, S.; Holzer, H.; Bockaj, Z. Automotive Lidar Modelling Approach Based on Material Properties and Lidar Capabilities. Sensors 2020, 20, 3309. [Google Scholar] [CrossRef] [PubMed]
- Cerema. Plateforme de Simulation de Conditions Climatiques Dégradées. Available online: https://www.cerema.fr/en/innovation-recherche/innovation/offres-technologie/simulation-platform-adverse-climate-conditions (accessed on 25 November 2025).
- Velodyne. High Definition Lidar HDL-64E. Available online: https://hypertech.co.il/wp-content/uploads/2015/12/HDL-64E-Data-Sheet.pdf (accessed on 25 November 2025).
- Robert Bosch GmbH. Automotive Handbook, 11th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Mercedes Benz, A.G. EQS Betriebsanleitung+. Available online: https://www.mercedes-benz.de/passengercars/services/manuals.html/eqs-limousine-2022-08-v297-mbux (accessed on 25 November 2025).
- International Civil Aviation Organization. Manual on Automatic Meteorological Observing Systems at Aerodromes; Technical Report; International Civil Aviation Organization: Montreal, QC, Canada, 2011. [Google Scholar]
- Li, W.; Liu, X.; Duan, F.; Qu, Y.; An, J. A one-year study on black carbon in urban Beijing: Concentrations, sources and implications on visibility. Atmos. Pollut. Res. 2022, 13, 101307. [Google Scholar] [CrossRef]
- Peng, Y.; Abdel-Aty, M.; Shi, Q.; Yu, R. Assessing the impact of reduced visibility on traffic crash risk using microscopic data and surrogate safety measures. Transp. Res. Part C Emerg. Technol. 2017, 74, 295–305. [Google Scholar] [CrossRef]
- Akimoto, Y.; Kusaka, H. A climatological study of fog in Japan based on event data. Atmos. Res. 2015, 151, 200–211. [Google Scholar] [CrossRef]
- International Civil Aviation Organization. Quantitative Criteria for “Sandstorm” and “Duststorm”; Technical Report; International Civil Aviation Organization: Montreal, QC, Canada, 2009. [Google Scholar]
- Kadhum, A.K.; Rasheed, M.A. Some characteristics of sand and dust storm sources in Iraq. In Proceedings of the 2nd International Conference for Engineering, Technology and Sciences of Al-Kitab, Karkuk, Iraq, 4–6 December 2018; pp. 11–15. [Google Scholar] [CrossRef]
- IQAir. 2022 World Air Quality Report; Technical Report; IQAir: Steinach, Switzerland, 2022. [Google Scholar]
- Coors, V.; Pietruschka, D.; Zeitler, B. iCity. Transformative Research for the Livable, Intelligent, and Sustainable City; Springer Nature: Cham, Switzerland, 2022; pp. 225–234. [Google Scholar]
- Fayyad, J.; Jaradat, M.A.; Gruyer, D.; Najjaran, H. Deep learning sensor fusion for autonomous vehicle perception and localization: A review. Sensors 2020, 20, 4220. [Google Scholar] [CrossRef] [PubMed]
- Favelli, S.; Xie, M.; Tonoli, A. Sensor Fusion Method for Object Detection and Distance Estimation in Assisted Driving Applications. Sensors 2024, 24, 7895. [Google Scholar] [CrossRef] [PubMed]






| Weather | ||
|---|---|---|
| Rain | , Carbonneau Model [23] | [16] |
| Fog | , Naboulsi Model [24] | [16] |
| Snow | , ITU Model [25] | [16] |
| Dust | [16] | [16] |
| PM2.5 | [16] | [16] |
| Weather | Parameter | Range |
|---|---|---|
| Rain | Precipitation (mm/h) | 0 to 100 |
| Fog | Visibility (m) | 10 to 500 |
| Snow | Precipitation (mm/h) | 0 to 10 |
| Dust | Visibility (m) | 10 to 500 |
| PM2.5 | Total suspended particle mass (µg/m³) | 0 to 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alavi, B.; Illing, T.; Campean, F.; Spencer, P.; Abdullatif, A. Analysis of Automotive Lidar Corner Cases Under Adverse Weather Conditions. Electronics 2025, 14, 4695. https://doi.org/10.3390/electronics14234695
Alavi B, Illing T, Campean F, Spencer P, Abdullatif A. Analysis of Automotive Lidar Corner Cases Under Adverse Weather Conditions. Electronics. 2025; 14(23):4695. https://doi.org/10.3390/electronics14234695
Chicago/Turabian StyleAlavi, Behrus, Thomas Illing, Felician Campean, Paul Spencer, and Amr Abdullatif. 2025. "Analysis of Automotive Lidar Corner Cases Under Adverse Weather Conditions" Electronics 14, no. 23: 4695. https://doi.org/10.3390/electronics14234695
APA StyleAlavi, B., Illing, T., Campean, F., Spencer, P., & Abdullatif, A. (2025). Analysis of Automotive Lidar Corner Cases Under Adverse Weather Conditions. Electronics, 14(23), 4695. https://doi.org/10.3390/electronics14234695

