A Comprehensive Study on GaN Power Devices: Reliability, Performance, and Application Perspectives
Abstract
1. Introduction
1.1. GaN Technology: Evolution from Academic Research to Industry Adoption
1.2. Market Strategy and Advantages of GaN Material
2. State of the Art GaN Technology
2.1. Depletion-Mode GaN HEMTs
2.2. Cascode GaN Configuration
2.3. Enhancement-Mode GaN HEMTs
2.4. GaN Rectifier
| Characteristics | Lateral GaN Loop Design | Vertical GaN Loop Design | Reference |
|---|---|---|---|
| Single-sided PCB capability | Supported—all components on one side simplify PCB layout. | Not supported—components on both sides require complex PCB. | [129,130] |
| Field self-cancelation | None, higher EMI potential. | Intrinsic field self-cancelation reduces EMI. | [131] |
| Shield layer required | Required to control parasitic coupling. | Not typically required. | [132] |
| Loop inductance dependence on PCB thickness | Insensitive, current loops mostly lateral. | Highly dependent, vertical current path traverses PCB layers. | [132] |
| Loop inductance dependence on inner layer distance | Sensitive to inner PCB layer spacing. | Insensitive, bulk conduction path dominates. | [130] |
| Loop inductance (Lp) | Large, lateral current path causes larger inductance. | Small, compact vertical conduction minimizes inductance. | [133] |
| Thermal management | Challenging due to lateral heat spread. | Efficient via vertical heat conduction and backside cooling. | [131,133] |
| Parasitic inductance impact | Large, leads to voltage overshoot and ringing. | Small, reduces switching losses and EMI. | [134] |
| PCB layer requirements | Simple, one or two layers adequate. | Complex, multi-layer PCBs required. | [132] |
| Loop path length | Longer loops increase inductance | Shorter loops reduce inductance, improve switching speed | [130] |
| Bypass capacitor placement | Critical to minimize ESL and loop inductance near FET gates | Similar placement critical | [135] |

2.5. Monolithic GaN Power ICs
3. Advances and Challenges in GaN HEMTs
3.1. Performance in GaN HEMTs
| Parameter | Si MOSFET | SiC MOSFET | GaN HEMT | GaN vs. Si Improvement | Reference |
|---|---|---|---|---|---|
| Switching Frequency (MHz) | <0.1 | 0.3–0.8 | 1–5 (up to 10 MHz in advanced designs) | ~10–50× faster | [164] |
| On-Resistance (RDS(on)) (mΩ·cm2) | 20–50 | 10–20 | 3–7 (as low as 2.5 mΩ·cm2 in advanced designs) | ~3–5× lower | [165] |
| Transconductance gm (S/mm) | 5–10 | 10–15 | 15–30 (up to 40 S/mm in advanced designs) | ~2–3× higher | [166] |
| Power-Added Efficiency (PAE %) at 2.45 GHz | 70–85 | 85–90 | 95–98 (up to 99% in advanced designs) | +10–15% | [167] |
| Thermal Resistance (°C/W) | High | Moderate | Low (as low as 0.1 °C/W with advanced thermal management) | Significantly lower | [168] |
| Voltage Ratings (V) | 600–1200 | 600–1200 | 600–650 (up to 1200 V in advanced designs) | Comparable | [168] |
| Switching Loss Reduction | Baseline | Baseline | ~60–80% lower (due to faster switching and lower gate charge) | Significant reduction | [167] |
| Market Adoption | Widely adopted in low-voltage applications | Gaining traction in high-voltage applications | Rapidly expanding in high-frequency and high-efficiency applications | Accelerated penetration in emerging power markets | [166,169] |
3.2. Major Reliability Issues and Challenges of GaN in Power Electronics
4. Application Case Study
4.1. Bridgeless Totem-Pole Converters and GaN-Based Boost for High-Efficiency Power Conversion
4.2. Double-Pulse Test and Experimental Validation for Reliability Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuce, F.; Hiller, M. Condition Monitoring of Power Electronic Systems Through Data Analysis of Measurement Signals and Control Output Variables. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 5118–5131. [Google Scholar] [CrossRef]
- Lohrasbi, S.; Hammer, R.; Essl, W.; Reiss, G.; Defregger, S.; Sanz, W. A comprehensive review on the core thermal management improvement concepts in power electronics. IEEE Access 2020, 8, 166880–166906. [Google Scholar] [CrossRef]
- Badwal, S.P.S.; Giddey, S.S.; Munnings, C.; Bhatt, A.I.; Hollenkamp, A.F. Emerging electrochemical energy conversion and storage technologies. Front. Chem. 2014, 2, 79. [Google Scholar] [CrossRef]
- Chaudhary, O.S.; Denaï, M.; Refaat, S.S.; Pissanidis, G. Technology and Applications of Wide Bandgap Semiconductor Materials: Current State and Future Trends. Energies 2023, 16, 6689. [Google Scholar] [CrossRef]
- Musumeci, S.; Barba, V. Gallium Nitride Power Devices in Power Electronics Applications: State of Art and Perspectives. Energies 2023, 16, 3894. [Google Scholar] [CrossRef]
- Rahmani, F.; Niknejad, P.; Agarwal, T.; Barzegaran, M. Gallium nitride inverter design with compatible snubber circuits for implementing wireless charging of electric vehicle batteries. Machines 2020, 8, 56. [Google Scholar] [CrossRef]
- Idaka, S.; Kondo, H.; Majumdar, G.; Miyoshi, A.; Trifunovich, D.; Akagi, H.; Alemu, S.; Antoniazzi, A.; Anvari-Moghaddam, A.; Bakran, M.-M.; et al. Power Semiconductors for An Energy-Wise Society; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2023. [Google Scholar]
- Tan, J.; Zhou, Z.; Zou, G. A Programmable Gate Driver Module-Based Multistage Voltage Regulation SiC MOSFET Switching Strategy. Electronics 2024, 13, 4379. [Google Scholar] [CrossRef]
- Microsemi, P.P.G. Gallium Nitride (GaN) versus Silicon Carbide (SiC) in the High Frequency (RF) and Power Switching Applications. Digi-Key 2014, 82, 2014. [Google Scholar]
- Rafin, S.M.S.H.; Ahmed, R.; Haque, M.A.; Hossain, M.K.; Haque, M.A.; Mohammed, O.A. Power Electronics Revolutionized: A Comprehensive Analysis of Emerging Wide and Ultrawide Bandgap Devices. Micromachines 2023, 14, 2045. [Google Scholar] [CrossRef]
- Jones, E.A.; Wang, F.F.; Costinett, D. Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 707–719. [Google Scholar] [CrossRef]
- Islam, N.; Mohamed, M.F.P.; Khan, M.F.A.J.; Falina, S.; Kawarada, H.; Syamsul, M. Reliability, Applications and Challenges of GaN HEMT Technology for Modern Power Devices: A Review. Crystals 2022, 12, 1581. [Google Scholar] [CrossRef]
- Pullabhatla, S.K.; Bobba, P.B.; Yadlapalli, S. Comparison of GAN, SIC, SI Technology for High Frequency and High Efficiency Inverters. E3S Web Conf. 2020, 184, 01012. [Google Scholar] [CrossRef]
- He, J.; Cheng, W.C.; Wang, Q.; Cheng, K.; Yu, H.; Chai, Y. Recent Advances in GaN-Based Power HEMT Devices. Adv. Electron. Mater. 2021, 7, 2001045. [Google Scholar] [CrossRef]
- Flack, T.J.; Pushpakaran, B.N.; Bayne, S.B. GaN Technology for Power Electronic Applications: A Review. J. Electron. Mater. 2016, 45, 2673–2682. [Google Scholar] [CrossRef]
- Burk, A.A., Jr.; O’loughlin, M.J.; Siergiej, R.R.; Agarwal, A.K.; Sriram, S.; Clarke, R.C.; MacMillan, M.F.; Balakrishna, V.; Brandt, C.D. SiC and GaN wide bandgap semiconductor materials and devices. Solid-State Electron. 1999, 43, 1459–1464. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y. Recent Advances in DC-DC Converters for Electric Vehicles. MATEC Web Conf. 2023, 386, 02008. [Google Scholar] [CrossRef]
- Kumar, A.; Moradpour, M.; Losito, M.; Franke, W.T.; Ramasamy, S.; Baccoli, R.; Gatto, G. Wide Band Gap Devices and Their Application in Power Electronics. Energies 2022, 15, 9172. [Google Scholar] [CrossRef]
- Keshmiri, N.; Wang, D.; Agrawal, B.; Hou, R.; Emadi, A. Current Status and Future Trends of GaN HEMTs in Electrified Transportation. IEEE Access 2020, 8, 70553–70571. [Google Scholar] [CrossRef]
- Yeboah, L.A.; Abdul Malik, A.; Oppong, P.A.; Acheampong, P.S.; Morgan, J.A.; Addo, R.A.A.; Williams Henyo, B.; Taylor, S.T.; Zudor, W.M.; Osei-Amponsah, S. Wide-Bandgap Semiconductors: A Critical Analysis of GaN, SiC, AlGaN, Diamond, and Ga2O3 Synthesis Methods, Challenges, and Prospective Technological Innovations. Intell. Sustain. Manuf. 2025, 2, 10011. [Google Scholar] [CrossRef]
- Kozak, J.P.; Zhang, R.; Porter, M.; Song, Q.; Liu, J.; Wang, B.; Wang, R.; Saito, W.; Zhang, Y. Stability, Reliability, and Robustness of GaN Power Devices: A Review. IEEE Trans. Power Electron. 2023, 38, 8442–8471. [Google Scholar] [CrossRef]
- Ding, X.; Zhou, Y.; Cheng, J. A Review of Gallium Nitride Power Device and Its Applications in Motor Drive. CES Trans. Electr. Mach. Syst. 2019, 3, 54–64. [Google Scholar] [CrossRef]
- Van Do, T.; Trovao, J.P.F.; Li, K.; Boulon, L. Wide-Bandgap Power Semiconductors for Electric Vehicle Systems: Challenges and Trends. IEEE Veh. Technol. Mag. 2021, 16, 89–98. [Google Scholar] [CrossRef]
- Haziq, M.; Falina, S.; Manaf, A.A.; Kawarada, H.; Syamsul, M. Challenges and Opportunities for High-Power and High-Frequency AlGaN/GaN High-Electron-Mobility Transistor (HEMT) Applications: A Review. Micromachines 2022, 13, 2133. [Google Scholar] [CrossRef]
- Rajendran, G.; Vaithilingam, C.A.; Misron, N.; Naidu, K.; Ahmed, M.R. A comprehensive review on system architecture and international standards for electric vehicle charging stations. J. Energy Storage 2021, 42, 103099. [Google Scholar] [CrossRef]
- Musznicki, P.; Derkacz, P.B.; Chrzan, P.J. Wideband modeling of dc-dc buck converter with gan transistors. Energies 2021, 14, 4430. [Google Scholar] [CrossRef]
- Prajapati, P.; Balamurugan, S. Leveraging GaN for DC-DC Power Modules for Efficient EVs: A Review. IEEE Access 2023, 11, 95874–95888. [Google Scholar] [CrossRef]
- Hedayati, M.H.; Dymond, H.C.P.; Goswami, R.; Stark, B.H. Investigating GaN power device double-pulse testing efficacy in the face of VTH-shift, dynamic Rdson, and temperature variations. In Proceedings of the Conference Proceedings—IEEE Applied Power Electronics Conference and Exposition—APEC, Phoenix, AZ, USA, 14–17 June 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Yan, D.; Hang, L.; He, Y.; He, Z.; Zeng, P. An Accurate Switching Transient Analytical Model for GaN HEMT under the Influence of Nonlinear Parameters. Energies 2022, 15, 2966. [Google Scholar] [CrossRef]
- González-Sentís, M.A.; Tounsi, P.; Bensoussan, A.; Dufour, A. Degradation indicators of power-GaN-HEMT under switching power-cycling. Microelectron. Reliab. 2019, 100–101, 113412. [Google Scholar] [CrossRef]
- Hou, R.; Shen, Y.; Zhao, H.; Hu, H.; Lu, J.; Long, T. Power Loss Characterization and Modeling for GaN-Based Hard-Switching Half-Bridges Considering Dynamic on-State Resistance. IEEE Trans. Transp. Electrif. 2020, 6, 540–553. [Google Scholar] [CrossRef]
- Toshiba Develops Technology to Reduce Losses in SiC Trench MOSFETs and Semi-Super-Junction Schottky Barrier Diodes|Toshiba Electronic Devices & Storage Corporation|Asia-English. Available online: https://toshiba.semicon-storage.com/ap-en/company/news/news-topics/2025/06/sic-power-devices-20250609-1.html (accessed on 3 September 2025).
- Advanced SiC Trench Gate MOSFET Technology for Automotive Applications—Technical Articles. Available online: https://eepower.com/technical-articles/advanced-sic-trench-gate-mosfet-technology-for-automotive-applications-high-performance-meets-high-robustness/ (accessed on 3 September 2025).
- 8-inch (200mm) Silicon Carbide Wafers Market Scope. Available online: https://www.marketresearchintellect.com/blog/the-8-inch-silicon-carbide-wafer-boom-a-game-changer-for-electronics-and-semiconductors/ (accessed on 3 September 2025).
- Manganelli, M.; Soldati, A.; Martirano, L.; Ramakrishna, S. Strategies for improving the sustainability of data centers via energy mix, energy conservation, and circular energy. Sustainability 2021, 13, 6114. [Google Scholar] [CrossRef]
- Dimarino, C.M.; Mouawad, B.; Johnson, C.M.; Boroyevich, D.; Burgos, R. 10-kV SiC MOSFET Power Module with Reduced Common-Mode Noise and Electric Field. IEEE Trans. Power Electron. 2020, 35, 6050–6060. [Google Scholar] [CrossRef]
- Matallana, A.; Ibarra, E.; López, I.; Andreu, J.; Garate, J.I.; Jordà, X.; Rebollo, J. Power module electronics in HEV/EV applications: New trends in wide-bandgap semiconductor technologies and design aspects. Renew. Sustain. Energy Rev. 2019, 113, 109264. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, M.; Yang, L.; Hou, B.; Martinez, R.P.; Mi, M.; Du, J.; Deng, L.; Wu, M.; Chowdhury, S.; et al. A review of GaN RF devices and power amplifiers for 5G communication applications. Fundam. Res. 2025, 5, 315–331. [Google Scholar] [CrossRef]
- Scott, M.J.; Fu, L.; Zhang, X.; Li, J.; Yao, C.; Sievers, M.; Wang, J. Merits of gallium nitride based power conversion. Semicond. Sci. Technol. 2013, 28, 074013. [Google Scholar] [CrossRef]
- Kim, T.K. A study on improving switching characteristics according to a circuit analysis technique in converter applications using gallium nitride field effect transistors. Energies 2019, 12, 3280. [Google Scholar] [CrossRef]
- Chu, R. GaN power switches on the rise: Demonstrated benefits and unrealized potentials. Appl. Phys. Lett. 2020, 116, 090502. [Google Scholar] [CrossRef]
- Fu, H.; Fu, K.; Yang, C.; Liu, H.; Hatch, K.A.; Peri, P.; Mudiyanselage, D.H.; Li, B.; Kim, T.-H.; Alugubelli, S.R.; et al. Selective area regrowth and doping for vertical gallium nitride power devices: Materials challenges and recent progress. Mater. Today 2021, 49, 296–323. [Google Scholar] [CrossRef]
- Yoon, Y.J.; Lee, J.S.; Kim, D.S.; Lee, J.H.; Kang, I.M. Gallium nitride normally off MOSFET using dual-metal-gate structure for the improvement in current drivability. Electronics 2020, 9, 1402. [Google Scholar] [CrossRef]
- Yole: RF GaN—The Stranglehold of 5G?—Industry News—Hinton Information Services. Available online: http://www.hintoninfo.com.tw/ugC_News_Detail.asp?hidNewsID=1588&hidNewsCatID=2&hidPage1=2 (accessed on 3 September 2025).
- GaN: A New Force in the Power Supply Market. Available online: https://www.wentaitek.com/news/industry-insights/industry-pc-power-news (accessed on 3 September 2025).
- Mordor Intelligence. Power Electronics Market Size & Share Analysis—Growth Trends & Forecasts (2025–2030); Mordor Intelligence: Hyderabad, India, 2025; Available online: https://www.mordorintelligence.com/industry-reports/power-electronics-market (accessed on 3 September 2025).
- Market Report: Yole Développement Predicts 70% Growth in the GaN Power Device Market, Reaching US$1.1 Billion in 2026—iKnow. Available online: https://iknow.stpi.niar.org.tw/Post/Read.aspx?PostID=17804 (accessed on 3 September 2025).
- Meneghini, M.; De Santi, C.; Abid, I.; Buffolo, M.; Cioni, M.; Khadar, R.A.; Nela, L.; Zagni, N.; Chini, A.; Medjdoub, F.; et al. GaN-based power devices: Physics, reliability, and perspectives. J. Appl. Phys. 2021, 130, 181101. [Google Scholar] [CrossRef]
- Global Gallium Nitride Semiconductor Device Market Analysis. Available online: https://www.globalmarketestimates.com/market-report/global-gallium-nitride-semiconductor-device-market-2295 (accessed on 3 September 2025).
- Gallium Nitride (GaN) Power Devices Market Size, Insights, Demand, & Forecast 2033. Available online: https://www.verifiedmarketreports.com/product/gallium-nitride-gan-power-devices-market/ (accessed on 3 September 2025).
- GaN Based Power Device Market|Size, Share, Trend, and Growth Analysis|2021–2026. Available online: https://www.stratviewresearch.com/2456/GaN-Based-Power-Device-Market.html (accessed on 3 September 2025).
- Infineon Advances on 300-Millimeter GaN Manufacturing r|Infineon Technologies. Available online: https://www.infineon.com/press-release/2025/INFXX202507-122 (accessed on 11 September 2025).
- Renesas Completes Acquisition of Transphorm|Renesas. Available online: https://www.renesas.com/en/about/newsroom/renesas-completes-acquisition-transphorm (accessed on 3 September 2025).
- Renesas Completes Transphorm Acquisition—Compound Semiconductor News. Available online: https://compoundsemiconductor.net/article/119635/Renesas_completes_Transphorm_acquisition (accessed on 3 September 2025).
- Renesas to Acquire Transphorm to Expand its Power Portfolio with GaN Technology|Renesas. Available online: https://www.renesas.com/en/about/newsroom/renesas-acquire-transphorm-expand-its-power-portfolio-gan-technology (accessed on 3 September 2025).
- InnoScience (Suzhou) Technology Holding (HKG:2577) Market Cap & Net Worth. Available online: https://stockanalysis.com/quote/hkg/2577/market-cap/ (accessed on 10 September 2025).
- Infineon on Track to Ship Customer Samples of GaN on 300 mm Wafers in Q4/2025. Available online: https://www.semiconductor-today.com/news_items/2025/jul/infineon-020725.shtml (accessed on 10 September 2025).
- Navitas Semiconductor (NVTS) Market Cap & Net Worth. Available online: https://stockanalysis.com/stocks/nvts/market-cap/ (accessed on 10 September 2025).
- Where is GaN Going? Gallium Nitride Market, Applications & Future|EPC. Available online: https://epc-co.com/epc/gallium-nitride/where-is-gan-going (accessed on 10 September 2025).
- Renesas to Buy Transphorm to Expand GaN Portfolio. Available online: https://www.eenewseurope.com/en/renesas-to-buy-transphorm-to-expand-gan-portfolio/ (accessed on 10 September 2025).
- Texas Instruments (TXN)—Market Capitalization. Available online: https://companiesmarketcap.com/texas-instruments/marketcap/#google_vignette (accessed on 10 September 2025).
- Nexperia Reports Resilient Annual Performance and Positive Outlook Amid Market Headwinds. Available online: https://www.semiconductor-today.com/news_items/2025/may/nexperia-190525.shtml (accessed on 10 September 2025).
- Mahesh, M.; Vinoth Kumar, K.; Abebe, M.; Udayakumar, L.; Mathankumar, M. A review on enabling technologies for high power density power electronic applications. Mater. Today Proc. 2020, 46, 3888–3892. [Google Scholar] [CrossRef]
- Tu, C.-C.; Hung, C.-L.; Hong, K.-B.; Elangovan, S.; Yu, W.-C.; Hsiao, Y.-S.; Lin, W.-C.; Kumar, R.; Huang, Z.-H.; Hong, Y.-H.; et al. Industry perspective on power electronics for electric vehicles. Nat. Rev. Electr. Eng. 2024, 1, 435–452. [Google Scholar] [CrossRef]
- Navitas Powers Xiaomi GaN Charger—Compound Semiconductor News. Available online: https://compoundsemiconductor.net/article/122247/Navitas_powers_Xiaomi_GaN_Charger (accessed on 3 September 2025).
- Navitas Semiconductor’s GaN Breakthrough with Xiaomi: A New Era for Consumer Electronics and a Must-Watch Stock? Available online: https://www.ainvest.com/news/navitas-semiconductor-gan-breakthrough-xiaomi-era-consumer-electronics-watch-stock-2508/ (accessed on 3 September 2025).
- China’s Lead in Power GaN Consumer Devices Drives the Future Use in Telecom/Datacom and Automotive. Available online: https://www.yolegroup.com/strategy-insights/chinas-lead-in-power-gan-consumer-devices-drives-the-future-use-in-telecom-datacom-and-automotive/ (accessed on 11 September 2025).
- AEC-Q101; Failure Mechanism Based Stress Test Qualification for Discrete Semiconductors. Automotive Electronics Council: Southfield, MI, USA, 2021. Available online: http://www.aecouncil.com/Documents/AEC_Q101_Rev_E_Base_Document.pdf (accessed on 27 October 2025).
- Navitas Powering Xiaomi’s 90W Next-gen GaN Charger. Available online: https://www.semiconductor-today.com/news_items/2025/aug/navitas-010825.shtml (accessed on 3 September 2025).
- Jiang, S.; Cai, Y.; Feng, P.; Shen, S.; Zhao, X.; Fletcher, P.; Esendag, V.; Lee, K.B.; Wang, T. Exploring an Approach toward the Intrinsic Limits of GaN Electronics. ACS Appl. Mater. Interfaces 2020, 12, 12949–12954. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-T.; Ren, F.-F.; Xu, W.-Z.; Chen, X.; Ye, J.; Li, L.; Zhou, D.; Zhang, R.; Zheng, Y.; Tan, H.H.; et al. Realization of p-type gallium nitride by magnesium ion implantation for vertical power devices. Sci. Rep. 2019, 9, 8796. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S. Gallium nitride based power switches for next generation of power conversion. Phys. Status Solidi (A) Appl. Mater. Sci. 2015, 212, 1066–1074. [Google Scholar] [CrossRef]
- Transphorm AEC-Q101 Qualifies Next Gen GaN Platform—News. Available online: https://compoundsemiconductor.net/article/106495/Transphorm_AEC-Q101_qualifies_next_gen_GaN_Platform (accessed on 3 September 2025).
- Cheng, S.; Chou, P.-C. GaN-HEMTs Cascode Switch: Fabrication and Demonstration on Power Conditioning Applications. In Proceedings of the 3rd International Conference on Industrial Application Engineering, Kitakyushu, Japan, 28–31 March 2015; Institute of Industrial Applications Engineers: Kitakyushu, Japan, 2015; pp. 548–554. [Google Scholar]
- Xue, P.; Iannuzzo, F. Self-Sustained Turn-OFF Oscillation of Cascode GaN HEMTs: Occurrence Mechanism, Instability Analysis, and Oscillation Suppression. IEEE Trans. Power Electron. 2022, 37, 5491–5500. [Google Scholar] [CrossRef]
- Botella, H.; Carlos, J. On the Integration of Wide Band-Gap Semiconductors in Single Phase Boost PFC Converters; APA; Technical University of Denmark, Department of Electrical Engineering: Washington, DC, USA, 2015; p. 173. [Google Scholar]
- Tiwari, S.; Undeland, T.; Midtgard, O.M.; Nilsen, R. SiC MOSFETs for Offshore Wind Applications. J. Phys. Conf. Ser. 2018, 1104, 012032. [Google Scholar] [CrossRef]
- Gunaydin, Y.; Jahdi, S.; Alatise, O.; Gonzalez, J.O.; Wu, R.; Stark, B.; Hedayati, M.; Yuan, X.; Mellor, P. Performance of wide-bandgap discrete and module cascodes at sub-1 kV: GaN vs. SiC. Microelectron. Reliab. 2021, 125, 114362. [Google Scholar] [CrossRef]
- Baby, R.; Mandal, M.; Roy, S.K.; Bardhan, A.; Muralidharan, R.; Basu, K.; Raghavan, S.; Nath, D.N. 8 A, 200 V normally-off cascode GaN-on-Si HEMT: From epitaxy to double pulse testing. Microelectron. Eng. 2023, 282, 112085. [Google Scholar] [CrossRef]
- Lin, Q.; Lu, C.; Wang, M.Q.; Zhao, D.A.; Hu, D.H. A High Efficiency Broadband Gallium Nitride Power Amplifier with Harmonic Control technology. Int. J. Electron. Lett. 2025, 13, 1–10. [Google Scholar] [CrossRef]
- Liu, C.; Abdul Khadar, R.; Matioli, E. GaN-on-Si Quasi-Vertical Power MOSFETs. IEEE Electron Device Lett. 2018, 39, 71–74. [Google Scholar] [CrossRef]
- Qian, Q.; Lei, J.; Wei, J.; Zhang, Z.; Tang, G.; Zhong, K.; Zheng, Z.; Chen, K.J. 2D materials as semiconducting gate for field-effect transistors with inherent over-voltage protection and boosted ON-current. npj 2D Mater. Appl. 2019, 3, 24. [Google Scholar] [CrossRef]
- Gallium Nitride Based EV Inverter Design|Projects|Ricardo. Available online: https://www.ricardo.com/en/projects/gallium-nitride-based-ev-inverter-design (accessed on 3 September 2025).
- GaN Systems Names GaN Advantages Growing in 400V and 800V EV Traction Design—Power Semiconductors Weekly. Available online: https://www.powersemiconductorsweekly.com/2023/10/20/gan-systems-names-gan-advantages-growing-in-400v-and-800v-ev-traction-design/ (accessed on 3 September 2025).
- 2SK3397 pdf, 2SK3397 Description, 2SK3397 Datasheet, 2SK3397 View: Alldatasheet. Available online: https://www.alldatasheet.com/datasheet-pdf/view/213370/TOSHIBA/2SK3397.html (accessed on 27 October 2025).
- Photovoltaic Mosfet Driver|Panasonic Industrial Devices. Available online: https://na.industrial.panasonic.com/products/relays-contactors/semiconductor-relays/lineup/photomos-relays/series/13035 (accessed on 27 October 2025).
- Infineon Technologies AG. IPP60R099P7 600 V CoolMOS™ P7 Power Transistor Data Sheet; Rev. 2.1; Infineon Technologies AG: Neubiberg, Germany, 2018; Available online: https://www.infineon.com/dgdl/Infineon-IPP60R099P7-DS-v02_01-EN.pdf?fileId=5546d4625b10283a015b1979a00e4aaa (accessed on 3 September 2025).
- CoolSiCTM MOSFETs Generation 2|Infineon Technologies. Available online: https://www.infineon.com/technology/power/mosfet/silicon-carbide/coolsic-mosfets-generation-2 (accessed on 27 October 2025).
- ROHM Co., Ltd. SCT2080KE 1200 V 40 A SiC MOSFET Data Sheet; ROHM Co., Ltd.: Kyoto, Japan, 2019; Available online: https://www.rohm.com/products/sic-power-devices/sic-mosfet/sct2080ke-product (accessed on 27 October 2025).
- MOSFETs|Nexperia. Available online: https://www.nexperia.com/products/mosfets#/p=1,s=0,f=,c=,rpp=,fs=0,sc=,so=,es= (accessed on 27 October 2025).
- Toshiba Launches 1200 V Silicon Carbide MOSFET that Contributes to High-efficiency Power Supply|Toshiba Electronic Devices & Storage Corporation|Asia-English. Available online: https://toshiba.semicon-storage.com/ap-en/company/news/news-topics/2020/10/mosfet-20201019-1.html (accessed on 27 October 2025).
- Wolfspeed, Inc. C3M0075120J2 Data Sheet, 1200 V, Discrete SiC MOSFET|Wolfspeed; Wolfspeed, Inc.: Durham, NC, USA, 2024; Available online: https://assets.wolfspeed.com/uploads/2024/05/Wolfspeed_C3M0075120J2_data_sheet.pdf. (accessed on 27 October 2025).
- ON Semiconductor. S3N—General-Purpose Rectifiers Data Sheet; Semiconductor Components Industries, LLC: Phoenix, AZ, USA, 2001; Available online: https://www.onsemi.com/pdf/datasheet/s3n-d.pdf (accessed on 27 October 2025).
- EPC2218 Enhancement-Mode GaN Pwr Transistor—EPC|DigiKey. Available online: https://www.digikey.ca/en/product-highlight/e/epc/epc2218-enhancement-mode-gan-power-transistor (accessed on 27 October 2025).
- LMG5200 Half-Bridge Power Stage: Feature, Application, and Datasheet. Available online: https://www.utmel.com/components/lmg5200-half-bridge-power-stage-feature-application-and-datasheet?id=93 (accessed on 27 October 2025).
- GaN Systems. GS66508T Top-Side Cooled 650 V E-Mode GaN Transistor Datasheet; GaN Systems: Ottawa, ON, Canada, 2004. [Google Scholar]
- GaN Systems. GS66506T Top-Side Cooled 650 V E-Mode GaN Transistor Datasheet; GaN Systems: Ottawa, ON, Canada, 2004. [Google Scholar]
- Transphorm Inc. TP90H050WS 900 V GaN FET; Transphorm Inc.: Goleta, CA, USA, 2023; Available online: https://www.mouser.com/datasheet/2/970/TP90H050WS_2v0-1837943.pdf (accessed on 27 October 2025).
- GaNPower International Inc. GPIHV30DFN 1200 V GaN FET in DFN8×8 package; GaNPower International Inc.: Vancouver, BC, Canada, 2025; Available online: https://iganpower.com/1200v-ganfet-in-dfn8x8-package (accessed on 27 October 2025).
- Innoscience-Product. Available online: https://www.innoscience.com/site/product_details/13 (accessed on 27 October 2025).
- Products|Ultrabandtech. Available online: https://www.ultrabandtech.com/product (accessed on 27 October 2025).
- Overview of GaN Solutions from Leading Manufacturers (Part 2)—Power Electronics News. Available online: https://www.powerelectronicsnews.com/overview-of-gan-solutions-from-leading-manufacturers-part-2/ (accessed on 3 September 2025).
- Liu, A.C.; Lai, Y.Y.; Chen, H.C.; Chiu, A.P.; Kuo, H.C. A Brief Overview of the Rapid Progress and Proposed Improvements in Gallium Nitride Epitaxy and Process for Third-Generation Semiconductors with Wide Bandgap. Micromachines 2023, 14, 764. [Google Scholar] [CrossRef]
- Infineon Adds EasyPACK CoolGaN Power Modules for High-Voltage Applications. Available online: https://www.semiconductor-today.com/news_items/2025/may/infineon-020525.shtml (accessed on 3 September 2025).
- Navitas’s GaN Bi-Directional IC: Catalyzing a Paradigm Shift in Power Electronics—Power Electronics News. Available online: https://www.powerelectronicsnews.com/navitass-gan-bi-directional-ic-catalyzing-a-paradigm-shift-in-power-electronics/ (accessed on 3 September 2025).
- Weikeng Technology Pte Ltd. Available online: https://www.weikeng.com.sg/show_news.php?lan=en&func=pro&id=12 (accessed on 3 September 2025).
- Infineon Broadens its GaN Power Portfolio by Introducing EasyPACKTM CoolGaNTM Power Modules Designed for High-Voltage Applications—Power Electronics News. Available online: https://www.powerelectronicsnews.com/infineon-broadens-its-gan-power-portfolio-by-introducing-easypack-coolgan-power-modules-designed-for-high-voltage-applications/ (accessed on 3 September 2025).
- 300mm GaN Roadmap “on Track” Says Infineon—Compound Semiconductor News. Available online: https://compoundsemiconductor.net/article/122057/300mm_GaN_roadmap_ (accessed on 3 September 2025).
- Infineon Expands GaN Power with 650V Modules—Compound Semiconductor News. Available online: https://compoundsemiconductor.net/article/121684/Infineon_expands_GaN_power_with_650V_modules (accessed on 7 September 2025).
- Infineon Advances GaN Technology with 300 mm Wafer Production—Power Electronics News. Available online: https://www.powerelectronicsnews.com/infineon-advances-gan-technology-with-300-mm-wafer-production/ (accessed on 3 September 2025).
- Infineon Makes First 300mm Power GaN Wafer with Existing Manufacturing Tools—News. Available online: https://www.allaboutcircuits.com/news/infineon-makes-first-300mm-power-gan-with-existing-manufacturing-tools/ (accessed on 3 September 2025).
- Liu, Y.; Lv, Y.; Guo, S.; Luan, Z.; Cheng, A.; Lin, Z.; Yang, Y.; Jiang, G.; Zhou, Y. A novel AlGaN/GaN heterostructure field-effect transistor based on open-gate technology. Sci. Rep. 2021, 11, 22431. [Google Scholar] [CrossRef]
- Wang, B.; Sukkaew, P.; Song, G.; Rosenkranz, A.; Lu, Y.; Nishimura, K.; Wang, J.; Lyu, J.; Cao, Y.; Yi, J.; et al. Unprecedented differences in the diamond nucleation density between carbon- and silicon-faces of 4H-silicon carbides. Chin. Chem. Lett. 2020, 31, 2013–2018. [Google Scholar] [CrossRef]
- Langpoklakpam, C.; Liu, A.C.; Hsiao, Y.K.; Lin, C.H.; Kuo, H.C. Vertical GaN MOSFET Power Devices. Micromachines 2023, 14, 1937. [Google Scholar] [CrossRef]
- You, S.; Geens, K.; Borga, M.; Liang, H.; Hahn, H.; Fahle, D.; Heuken, M.; Mukherjee, K.; De Santi, C.; Meneghini, M.; et al. Vertical GaN devices: Process and reliability. Microelectron. Reliab. 2021, 126, 114218. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, J.; Wu, S.; Jia, L.; Yang, X.; Liu, Y.; Zhang, Y.; Sun, Q. A review on the GaN-on-Si power electronic devices. Fundam. Res. 2022, 2, 462–475. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.K.; Rajput, S.; Kaushik, V.; Mishra, R.D.; Babu, P.; Kumar, M. Optically triggered AlGaN/GaN semiconductor power transistor with bi-layer anti-reflecting structure. Opt. Eng. 2023, 62, 127102. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Chen, Y.Y.; Yeh, P.H.; Horng, R.H. Thermal Management of GaN-on-Si High Electron Mobility Transistor by Copper Filled Micro-Trench Structure. Sci. Rep. 2019, 9, 19691. [Google Scholar] [CrossRef] [PubMed]
- Uedono, A.; Tanaka, R.; Takashima, S.; Ueno, K.; Edo, M.; Shima, K.; Kojima, K.; Chichibu, S.F.; Ishibashi, S. Dopant activation process in Mg-implanted GaN studied by monoenergetic positron beam. Sci. Rep. 2021, 11, 20660. [Google Scholar] [CrossRef]
- Navitas-PSMC Partnership Reshapes GaN Landscape as TSMC Plans Exit. Available online: https://techsoda.substack.com/p/navitas-psmc-partnership-reshapes (accessed on 12 September 2025).
- 9 GaN Power Device Manufacturers in 2025|Metoree. Metoree Inc. Available online: https://us.metoree.com/categories/gan-power-device/ (accessed on 12 September 2025).
- Ruzzarin, M.; Geens, K.; Borga, M.; Liang, H.; You, S.; Bakeroot, B.; Decoutere, S.; De Santi, C.; Neviani, A.; Meneghini, M.; et al. Exploration of gate trench module for vertical GaN devices. Microelectron. Reliab. 2020, 114, 113828. [Google Scholar] [CrossRef]
- Favero, D.; De Santi, C.; Mukherjee, K.; Borga, M.; Geens, K.; Chatterjee, U.; Bakeroot, B.; Decoutere, S.; Rampazzo, F.; Meneghesso, G.; et al. Impact of doping and geometry on breakdown voltage of semi-vertical GaN-on-Si MOS capacitors. Microelectron. Reliab. 2022, 138, 114620. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Z.; You, S.; Zhou, W.; Bakeroot, B.; Liu, J.; Sun, L.; Decoutere, S. Surface-Potential-Based Compact Model for the Gate Current of p-GaN Gate HEMTs. IEEE Trans. Electron Devices 2020, 67, 3564–3567. [Google Scholar] [CrossRef]
- STMicroelectronics and Innoscience sign GaN Technology Development and Manufacturing Agreement—ST News. Available online: https://newsroom.st.com/media-center/press-item.html/c3325.html (accessed on 3 September 2025).
- Innoscience and NVIDIA Partner to Accelerate Adoption of 800V Power Architecture in Next-Gen AI Data Centers—Power Electronics News. Available online: https://www.powerelectronicsnews.com/innoscience-and-nvidia-partner-to-accelerate-adoption-of-800v-power-architecture-in-next-gen-ai-data-centers/ (accessed on 3 September 2025).
- Mukherjee, K.; De Santi, C.; Borga, M.; Geens, K.; You, S.; Bakeroot, B.; Decoutere, S.; Diehle, P.; Hübner, S.; Altmann, F.; et al. Challenges and perspectives for vertical gan-on-si trench mos reliability: From leakage current analysis to gate stack optimization. Materials 2021, 14, 2316. [Google Scholar] [CrossRef]
- Meneghini, M.; Fregolent, M.; Zagni, N.; Hamadoui, Y.; Marcuzzi, A.; Favero, D.; De Santi, C.; Buffolo, M.; Tomasi, M.; Zappalà, G.; et al. Vertical GaN Devices: Reliability Challenges and Lessons Learned from Si and SiC. In Proceedings of the Technical Digest—International Electron Devices Meeting, IEDM, San Francisco, CA, USA, 7–11 December 2024; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2024. [Google Scholar]
- Bodo’s Power Systems. Electronics in Motion and Conversion, January 2021. Bodo’s Power Systems. 2021. Available online: https://www.bodospower.com/restricted/downloads/bp_2021_01.pdf (accessed on 12 September 2025).
- Innoscience Co., Ltd. AN006 “InnoGaN Layout Design Guide”; Revision 1.1; Innoscience Co., Ltd.: Shenzhen, China, 2024; Available online: https://www.innoscience.com/uploads/AN006-InnoGaN%20Layout%20Design%20Guide-Rev1.1-en.pdf (accessed on 12 September 2025).
- How to Design a PCB Layout for Highest Half-Bridge GaN Driver Performance|Analog Devices. Available online: https://www.analog.com/en/resources/analog-dialogue/articles/how-to-design-pcb-layout.html (accessed on 7 October 2025).
- PCB Layout Blueprint for GaN Power Devices: Loop Inductance and Return Paths. Available online: https://eureka.patsnap.com/report-pcb-layout-blueprint-for-gan-power-devices-loop-inductance-and-return-paths (accessed on 7 October 2025).
- High-Performance Layout Techniques to Maximize GaN Device Performance. 2024. Available online: https://epc-co.com/epc/Portals/0/epc/documents/presentations/High-Performance%20Layout%20Techniques%20to%20Maximize%20GaN%20Device%20Performance.pdf/ (accessed on 12 September 2025).
- Infineon Technologies AG. Optimizing PCB Layout for CoolGaNTM Power Transistors in SMPS Applications. 2025. Available online: https://www.infineon.com/assets/row/public/documents/24/42/infineon-coolgan-high-voltage-power-transistors-for-pcb-layout-optimization-applicationnotes-en.pdf/ (accessed on 12 September 2025).
- Renesas Electronics. Application Note Printed Circuit Board Layout and Probing for GaN Power Switches. 2024. Available online: https://www.renesas.com/en/document/apn/printed-circuit-board-layout-and-probing-gan-power-switches/ (accessed on 12 September 2025).
- Improving Performance with Monolithic GaN Integration While Reducing Size, Cost—Technical Articles. Available online: https://eepower.com/technical-articles/improving-performance-while-reducing-size-and-cost-with-monolithic-gan-integration/?utm_source=chatgpt.com# (accessed on 11 September 2025).
- Moench, S.; Müller, S.; Reiner, R.; Waltereit, P.; Czap, H.; Basler, M.; Hückelheim, J.; Kirste, L.; Kallfass, I.; Quay, R.; et al. Monolithic Integrated AlGaN/GaN Power Converter Topologies on High-Voltage AlN/GaN Superlattice Buffer. Phys. Status Solidi (A) Appl. Mater. Sci. 2021, 218, 2000404. [Google Scholar] [CrossRef]
- Cui, M.; Zhu, Y.; Cao, P.; Li, A.; Bu, Q.; Mitrovic, I.Z.; Su, X.; Zhao, Y.; Wen, H.; Liu, W.; et al. A monolithic GaN driver with a deadtime generator (DTG) for high-temperature (HT) GaN DC-DC buck converters. IET Power Electron. 2023, 16, 1582–1594. [Google Scholar] [CrossRef]
- How do Monolithically Integrated GaN Power ICs Increase Power Density and Reduce Component Count?—Electrical Engineering News and Products. Available online: https://www.eeworldonline.com/how-do-monolithically-integrated-gan-power-ics-increase-power-density-and-reduce-component-count/ (accessed on 3 September 2025).
- Sun, R.; Lai, J.; Chen, W.; Zhang, B. GaN Power Integration for High Frequency and High Efficiency Power applications: A Review. IEEE Access 2020, 8, 15529–15542. [Google Scholar] [CrossRef]
- Yadlapalli, R.T.; Kotapati, A.; Kandipati, R.; Balusu, S.R.; Koritala, C.S. Advancements in energy efficient GaN power devices and power modules for electric vehicle applications: A review. Int. J. Energy Res. 2021, 45, 12638–12664. [Google Scholar] [CrossRef]
- ROHM GaN Power Solutions|ROHM Co., Ltd. Available online: https://www.rohm.com/support/gan-power-device (accessed on 7 September 2025).
- Navitas to Unveil Breakthrough Advances in GaN and SiC for AI Data Center, EV, and Mobile Applications at APEC 2025—Navitas. Available online: https://navitassemi.com/navitas-to-unveil-breakthrough-advances-in-gan-and-sic-for-ai-data-center-ev-and-mobile-applications-at-apec-2025/ (accessed on 7 September 2025).
- Gallium Nitride (GaN) FETs and ICs|Product Selector Guide|EPC. Available online: https://epc-co.com/epc/products/gan-fets-and-ics (accessed on 7 September 2025).
- Overview of Gallium Nitride (GaN) Solutions from Leading Manufacturers—Part 3—Power Electronics News. Available online: https://www.powerelectronicsnews.com/overview-of-gallium-nitride-gan-solutions-from-leading-manufacturers-part-3/ (accessed on 7 September 2025).
- 21 Leading GaN Power Device Companies Shaping the Market Outlook Through 2030. Available online: https://www.researchandmarkets.com/articles/key-companies-in-gan-power-device (accessed on 7 September 2025).
- GaN Power Device Market Size & Growth 2025–2033. Available online: https://www.globalgrowthinsights.com/market-reports/gan-power-device-market-106839 (accessed on 7 September 2025).
- GaN FETs|Nexperia. Available online: https://www.nexperia.com/products/gan-fets#/p=1,s=0,f=,c=,rpp=,fs=0,sc=,so=,es= (accessed on 7 September 2025).
- GaN Power Discretes|Renesas. Available online: https://www.renesas.com/en/products/power-discretes/gan-power-discretes (accessed on 7 September 2025).
- GaN HEMTs Deliver Record Efficiency—News. Available online: https://compoundsemiconductor.net/article/113031/GaN_HEMTs_deliver_record_efficiency (accessed on 3 September 2025).
- Moon, J.-S.; Grabar, B.; Wong, J.; Dao, C.; Arkun, E.; Tai, H.; Fanning, D.; Miller, N.C.; Elliott, M.; Gilbert, R.; et al. W-Band Graded-Channel GaN HEMTs with Record 45% Power-Added-Efficiency at 94 GHz. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 161–164. [Google Scholar] [CrossRef]
- LDMOS vs GaN for RF Energy?—Everything RF. Available online: https://www.everythingrf.com/community/ldmos-vs-gan-for-rf-energy (accessed on 7 September 2025).
- GaN HEMTs: The Benefits of far Higher Voltages—News. Available online: https://compoundsemiconductor.net/article/111438/GaN_HEMTs_The_benefits_of_far_higher_voltages (accessed on 7 September 2025).
- Zarghami, S.; Hayati, M. Design of dual-band power amplifier using bandstop filter and dual-mode bias circuit for multistandard transceiver systems. Sci. Rep. 2023, 13, 15815. [Google Scholar] [CrossRef]
- Sepahvand, E.; Sheikhi, A. Analysis and design of the novel five harmonic peaking Class-EF power amplifier. Sci. Rep. 2025, 15, 9890. [Google Scholar] [CrossRef]
- Hamza, H.; Jarndal, A. Modeling and Simulation of AlPN/GaN High Electron Mobility Transistor. Adv. Theory Simul. 2025, 8, 2401115. [Google Scholar] [CrossRef]
- Zhan, T.; Xu, M.; Cao, Z.; Zheng, C.; Kurita, H.; Narita, F.; Wu, Y.-J.; Xu, Y.; Wang, H.; Song, M.; et al. Effects of Thermal Boundary Resistance on Thermal Management of Gallium-Nitride-Based Semiconductor Devices: A Review. Micromachines 2023, 14, 2076. [Google Scholar] [CrossRef]
- Al-Neama, A.F.; Kapur, N.; Summers, J.; Thompson, H.M. Thermal management of GaN HEMT devices using serpentine minichannel heat sinks. Appl. Therm. Eng. 2018, 140, 622–636. [Google Scholar] [CrossRef]
- Middleton, C.; Dalcanale, S.; Pomeroy, J.W.; Uren, M.J.; Chang, J.; Parke, J.; Wathuthanthri, I.; Nagamatsu, K.; Saluru, S.; Gupta, S.; et al. Thermal Transport in Superlattice Castellated Field Effect Transistors. IEEE Electron Device Lett. 2019, 40, 1374–1377. [Google Scholar] [CrossRef]
- Feijoo, P.C.; Pasadas, F.; Iglesias, J.M.; Hamham, E.M.; Rengel, R.; Jimenez, D. Radio frequency performance projection and stability tradeoff of h-BN encapsulated graphene field-effect transistors. IEEE Trans. Electron Devices 2019, 66, 1567–1573. [Google Scholar] [CrossRef]
- Khalaj, M.; Golkhatmi, S.Z.; Alem, S.A.A.; Baghchesaraee, K.; Hasanzadeh Azar, M.; Angizi, S. Recent progress in the study of thermal properties and tribological behaviors of hexagonal boron nitride-reinforced composites. J. Compos. Sci. 2020, 4, 116. [Google Scholar] [CrossRef]
- Li, K.; Sen, S. A Fast and Accurate GaN Power Transistor Model and Its Application for Electric Vehicle. IEEE Trans. Veh. Technol. 2024, 73, 4541–4553. [Google Scholar] [CrossRef]
- Wadsworth, A.; Thrimawithana, D.J.; Zhao, L.; Neuburger, M.; Oliver, R.A.; Wallis, D.J. GaN-based cryogenic temperature power electronics for superconducting motors in cryo-electric aircraft. Supercond. Sci. Technol. 2023, 36, 094002. [Google Scholar] [CrossRef]
- Proceedings of the IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 24–27 October 2016; IEEE: Piscataway, NJ, USA, 2016.
- Prado, E.O.; Bolsi, P.C.; Sartori, H.C.; Pinheiro, J.R. An Overview about Si, Superjunction, SiC and GaN Power MOSFET Technologies in Power Electronics Applications. Energies 2022, 15, 5244. [Google Scholar] [CrossRef]
- Semiconductor & System Solutions|Infineon Technologies. Available online: https://www.infineon.com/ (accessed on 7 October 2025).
- Shivanand Powar, K.; Komalesh Tadepalli, V.; Vijay Painter, V.; Sommet, R.; Chakravorty, A.; Raja, P.V. Maximum, effective, and average thermal resistance for GaN-based HEMTs on SiC, Si and sapphire substrates. Solid State Electron. 2025, 227, 109121. [Google Scholar] [CrossRef]
- Power Systems Design (PSD) Information to Power Your Designs. Available online: https://www.powersystemsdesign.com/home (accessed on 7 October 2025).
- News—Navitas. Available online: https://navitassemi.com/news/ (accessed on 7 October 2025).
- Iannuzzo, F.; Zhang, K. Reliability of Electronic Components and Systems with WBG Technology. In Power Electronic Conversion Technology Platform; PECTA: Khorog, Tajikistan, 2024. [Google Scholar]
- Ngwashi, D.K.; Phung, L.V. Recent review on failures in silicon carbide power MOSFETs. Microelectron. Reliab. 2021, 123, 114169. [Google Scholar] [CrossRef]
- Molin, Q.; Kanoun, M.; Raynaud, C.; Morel, H. Measurement and analysis of SiC-MOSFET threshold voltage shift. Microelectron. Reliab. 2018, 88–90, 656–660. [Google Scholar] [CrossRef]
- Lelis, A.; Habersat, D.; Green, R.; Mooro, E. Key Reliability Issues for SiC Power MOSFETs. ECS Trans. 2013, 58, 87–93. [Google Scholar] [CrossRef]
- Dai, P.; Wang, S.; Lu, H. Research on the Reliability of Threshold Voltage Based on GaN High-Electron-Mobility Transistors. Micromachines 2024, 15, 321. [Google Scholar] [CrossRef]
- Ye, R.; Cai, X.; Du, C.; Liu, H.; Zhang, Y.; Duan, X.; Zhu, J. An Overview on Analyses and Suppression Methods of Trapping Effects in AlGaN/GaN HEMTs. IEEE Access 2022, 10, 21759–21773. [Google Scholar] [CrossRef]
- Zanoni, E.; Rampazzo, F.; De Santi, C.; Gao, Z.; Sharma, C.; Modolo, N.; Verzellesi, G.; Chini, A.; Meneghesso, G.; Meneghini, M. Failure Physics and Reliability of GaN-Based HEMTs for Microwave and Millimeter-Wave Applications: A Review of Consolidated Data and Recent Results. Phys. Status Solidi (A) Appl. Mater. Sci. 2022, 219, 2100722. [Google Scholar] [CrossRef]
- Sayed, H.; Kulothungan, G.S.; Krishnamoorthy, H.S. Characterization of GaN HEMTs’ Aging Precursors and Activation Energy Under a Wide Range of Thermal Cycling Tests. IEEE Open J. Ind. Electron. Soc. 2023, 4, 123–134. [Google Scholar] [CrossRef]
- Zhou, G.; Zeng, F.; Jiang, Y.; Wang, Q.; Jiang, L.; Xia, G.; Yu, H. Determination of the Gate Breakdown Mechanisms in p-GaN Gate HEMTs by Multiple-Gate-Sweep Measurements. IEEE Trans. Electron Devices 2021, 68, 1518–1523. [Google Scholar] [CrossRef]
- Xu, X.B.; Li, B.; Chen, Y.Q. Analysis of Trap and Recovery Characteristics Based on Low-Frequency Noise for E-Mode GaN HEMTs under Electrostatic Discharge Stress. IEEE J. Electron Devices Soc. 2021, 9, 89–95. [Google Scholar] [CrossRef]
- Liang, Y.; Duan, J.; Zhang, P.; Low, K.L.; Zhang, J.; Liu, W. Characterization of Trap States in AlGaN/GaN MIS-High-Electron-Mobility Transistors under Semi-on-State Stress. Nanomaterials 2024, 14, 1529. [Google Scholar] [CrossRef]
- Momeni, D.; Mazzillo, M.; Laha, S.; Sani, M.S.B.A.; Urresti, J.; Dai, T.X.; Liguda, C.; Habenicht, S. Early-Stage Reliability Evaluation of Passivation Stack and Termination Designs in SiC MPS Diodes. Solid State Phenom. 2024, 361, 33–38. [Google Scholar] [CrossRef]
- Lin, W.; Wang, M.; Sun, H.; Xie, B.; Wen, C.P.; Hao, Y.; Shen, B. Suppressing buffer-induced current collapse in gan hemts with a source-connected p-gan (Scpg): A simulation study. Electronics 2021, 10, 942. [Google Scholar] [CrossRef]
- Kang, Y.; Sung, H.; Kim, H. Investigation of kink effect in normally-off AlGaN/GaN recessed-gate MOS-heterostructure FETs. J. Vac. Sci. Technol. B 2016, 34, 052202. [Google Scholar] [CrossRef]
- Lambert, B.; Thorpe, J.; Behtash, R.; Schauwecker, B.; Bourgeois, F.; Jung, H.; Bataille, J.; Mezenge, P.; Gourdon, C.; Ollivier, C.; et al. Reliability data’s of 0.5 μm AlGaN/GaN on SiC technology qualification. Microelectron. Reliab. 2012, 52, 2200–2204. [Google Scholar] [CrossRef]
- Talukder, A.; Ifty, M.R.; Al Fahad, A. Comprehensive review of GaN HEMTs: Architectures, recent developments, reliability concerns, challenges, and multifaceted applications. E-Prime—Adv. Electr. Eng. Electron. Energy 2025, 13, 101059. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, Z.; Andersen, M.A.E. A Comparison Review of the Resonant Gate Driver in the Silicon MOSFET and the GaN Transistor Application. IEEE Trans. Ind. Appl. 2019, 55, 7776–7786. [Google Scholar] [CrossRef]
- Hou, F.; Wang, W.; Ma, R.; Li, Y.; Han, Z.; Su, M.; Li, J.; Yu, Z.; Song, Y.; Wang, Q.; et al. Fan-Out Panel-Level PCB-Embedded SiC Power MOSFETs Packaging. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 367–380. [Google Scholar] [CrossRef]
- Martin-Ramos, J.A.; Pardo-Vaquero, O.; Diaz, J.; Nuno, F.; Villegas, P.J.; Martin-Pernia, A. Modelling a Multilevel LCC Resonant AC-DC Converter for Wide Variations in the Input and the Load. IEEE Trans. Power Electron. 2019, 34, 5217–5228. [Google Scholar] [CrossRef]
- Navitas Semiconductor Debuts GaNSlimTM GaN Power Chip for Ultra-Compact, High-Efficiency Applications—Chargerlab. Available online: https://www.chargerlab.com/navitas-semiconductor-debuts-ganslim-gan-power-chip-for-ultra-compact-high-efficiency-applications/ (accessed on 3 September 2025).
- Infineon Pioneers World’s First 300 mm Power Gallium ni|Infineon Technologies. Available online: https://www.infineon.com/press-release/2024/infxx202409-142 (accessed on 3 September 2025).
- Texas Instruments. LMG3614 650 V 170 mΩ GaN FET With Integrated Driver; Data Sheet; Texas Instruments Incorporated: Dallas, TX, USA, 2024; Available online: https://www.ti.com/product/LMG3614/ (accessed on 3 September 2025).
- TI Launches Integrated GaN Power Stages in TOLL Packages. Available online: https://www.semiconductor-today.com/news_items/2025/mar/ti-200325.shtml (accessed on 3 September 2025).
- EPC Launches EPC2367 100V GaN FET with 1.2 mΩ On-Resistance. Available online: https://www.semiconductor-today.com/news_items/2025/mar/epc-180325.shtml (accessed on 3 September 2025).
- InnoSwitch|Power Integrations. Available online: https://www.power.com/products/innoswitch (accessed on 3 September 2025).
- Transphorm Announces First Automotive-Qualified GaN FETs|Semiconductor Digest. Available online: https://sst.semiconductor-digest.com/2017/03/transphorm-announces-first-automotive-qualified-gan-fets/ (accessed on 3 September 2025).
- Transphorm Releases Simulation Model of first 1200V GaN-On-Sapphire Device. Available online: https://www.semiconductor-today.com/news_items/2023/may/transphorm-090523.shtml (accessed on 3 September 2025).
- Chen, B.R.; Sung, C.; Hsiao, Y.S.; Yu, W.C.; Lin, W.C.; Elangovan, S.; Hsiao, Y.K.; Kuo, H.C.; Tu, C.C.; Wu, T.L. Driving waveform modification for investigating trade-off between switching loss and gate overshoot in SiC MOSFETs. Microelectron. Reliab. 2025, 167, 115653. [Google Scholar] [CrossRef]
- Hsiao, Y.S.; Yu, W.C.; Sung, C.; Lin, W.C.; Hsiao, Y.K.; Hung, C.L.; Huang, Z.H.; Kuo, H.C.; Tu, C.C.; Wu, T.L. A Novel Gate Driver with Charge Sharing Technique to Optimize Gate Turn-On/Turn-Off Overshoot and Switching Loss Trade-off in SiC Power MOSFETs. In Proceedings of the International Symposium on Power Semiconductor Devices and ICs, Bremen, Germany, 2–6 June 2024; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2024; pp. 184–187. [Google Scholar]
- Jafari, A.; Nikoo, M.S.; Perera, N.; Yildirim, H.K.; Karakaya, F.; Soleimanzadeh, R.; Matioli, E. Comparison of Wide-Band-Gap Technologies for Soft-Switching Losses at High Frequencies. IEEE Trans. Power Electron. 2020, 35, 12595–12600. [Google Scholar] [CrossRef]
- Bouchour, A.M.; El Oualkadi, A.; Latry, O.; Dherbécourt, P.; Echeverri, A. Estimation of losses of GaN HEMT in power switching applications based on experimental characterization. Comput. Electr. Eng. 2020, 84, 106622. [Google Scholar] [CrossRef]
- Liu, L.; Zhen, Y.; Li, S.; Pang, B.; Zeng, K. Research on the Degradation and Failure Mechanisms of the Unclamped-Inductive-Switching Characteristics of p-GaN HEMT Devices. Micromachines 2025, 16, 514. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Cao, B. Two-temperature principle for evaluating electrothermal performance of GaN HEMTs. Appl. Phys. Lett. 2024, 124, 042107. [Google Scholar] [CrossRef]
- Hu, M.; Liu, G.; Du, E.; Mu, F. Thermal effect on dynamic Ron degradation of p-GaN AlGaN/GaNHEMTs on SiC substrates. IEICE Electron. Express 2020, 17, 20200255. [Google Scholar] [CrossRef]
- Bernát, J.; Javorka, P.; Fox, A.; Marso, M.; Lüth, H.; Kordoš, P. Effect of surface passivation on performance of AlGaN/GaN/Si HEMTs. Solid State Electron. 2003, 47, 2097–2103. [Google Scholar] [CrossRef]
- Ghizzo, L.; Trémouilles, D.; Richardeau, F.; Vinnac, S.; Jamin, F.; Guibaud, G. Over-voltage and cross-conduction hard switching stress on schottky gate-type p-GaN HEMT in half-bridge operation. Experimental and physical approaches. Microelectron. Reliab. 2023, 150, 115172. [Google Scholar] [CrossRef]
- Infineon Technologies AG. EVAL_2500W_PFC_GaN_A—2.5 kW Full-Bridge Totem-Pole PFC Evaluation Board; Infineon Technologies AG: Neubiberg, Germany, 2018; Available online: https://www.we-online.com/en/components/icref/infineon-technologies/IGO60R070D1-EVAL-2500W-PFC-GaN-A-Full-Bridge (accessed on 27 October 2025).
- Infineon Technologies. GS66508T 650 V Top-Side Cooled GaN Transistor Data Sheet; Rev. 200402; Infineon Technologies: Neubiberg, Germany, 2020; Available online: https://www.mouser.com/datasheet/2/692/GS66508T%20DS%20Rev%20151230-843777.pdf (accessed on 27 October 2025).
- Transphorm Inc. TP65H050WS 650 V Cascode GaN FET in TO-247 Data Sheet; Rev. 2 (21 December 2018); Transphorm Inc.: Goleta, CA, USA, 2018; Available online: https://www.mouser.com/datasheet/2/970/tp65h050ws_v2-1539038.pdf (accessed on 27 October 2025).
- Transphorm Inc. TPH3205WS 600 V Cascode GaN FET (TO-247) Data Sheet; Transphorm Inc.: Goleta, CA, USA, 2016; Available online: https://www.datasheet4u.com/datasheets/Transphorm/TPH3205WS/1352385 (accessed on 27 October 2025).
- Ayerbe, E. C3M0060065K Silicon Carbide Power MOSFET C3M TM MOSFET Technology N-Channel Enhancement Mode. Available online: https://www.alldatasheet.com/datasheet-pdf/view/1670025/WOLFSPEED/C3M0060065K.html (accessed on 27 October 2025).
- SCT3030AL—Data Sheet, Product Detail|ROHM.com. Available online: https://www.rohm.com/products/sic-power-devices/sic-mosfet/sct3030al-product#similarproducts (accessed on 27 October 2025).
- SCT3060AL—Data Sheet, Product Detail|ROHM.com. Available online: https://www.rohm.com/products/sic-power-devices/sic-mosfet/sct3060al-product#productDetail (accessed on 27 October 2025).
- Wolfspeed, Inc. C3M0060065K 650 V Silicon Carbide MOSFET Data Sheet; Rev. 5; Wolfspeed, Inc.: Durham, NC, USA, 2024; Available online: https://www.wolfspeed.com/products/power/sic-mosfets/650v-silicon-carbide-mosfets/c3m0060065k/ (accessed on 27 October 2025).
- Wolfspeed, Inc. C3M0075120K-A 1200 V SiC MOSFET Data Sheet; Rev. 02, September 2024; Wolfspeed, Inc.: Durham, NC, USA, 2024; Available online: https://assets.wolfspeed.com/uploads/2023/08/Wolfspeed_C3M0075120K_data_sheet.pdf (accessed on 27 October 2025).
- SCT3040KLHR—Data Sheet, Product Detail|ROHM. com. Available online: https://www.rohm.com/products/sic-power-devices/sic-mosfet/sct3040klhr-product#productDetail (accessed on 27 October 2025).
- Infineon Technologies AG. IPW60R080P7 600 V CoolMOS™ P7 Power Transistor Data Sheet; Infineon Technologies AG: Neubiberg, Germany, 2017; Available online: https://www.infineon.com/assets/row/public/documents/24/49/infineon-ipw60r080p7-ds-en.pdf?fileId=5546d4625acbae4c015accfab2a0026a (accessed on 27 October 2025).
- IPW60R070CFD7—500 V-950 V CoolMOSTM N-Channel Power MOSFET|Infineon Technologies. Available online: https://www.infineon.com/part/IPW60R070CFD7 (accessed on 27 October 2025).
- Buffolo, M.; Favero, D.; Marcuzzi, A.; De Santi, C.; Meneghesso, G.; Zanoni, E.; Meneghini, M. Review and Outlook on GaN and SiC Power Devices: Industrial State-of-the-Art, Applications, and Perspectives. IEEE Trans. Electron Devices 2024, 71, 1344–1355. [Google Scholar] [CrossRef]
- Biliński, J. The latest generation drive for electric buses powered by SiC technology for high energy efficiency. MATEC Web Conf. 2018, 180, 02012. [Google Scholar] [CrossRef][Green Version]
- Oka, T. Recent development of vertical GaN power devices. jpn J. Appl. Phys. 2019, 58, SB0805. [Google Scholar] [CrossRef]
- Hassan, A.; Savaria, Y.; Sawan, M. Electronics and packaging intended for emerging harsh environment applications: A review. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2018, 26, 2085–2098. [Google Scholar] [CrossRef]
- Ammar, A.M. Advances in Resonant Power Conversion for Offline Converter Applications. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 2020. Available online: https://orbit.dtu.dk/en/publications/advances-in-resonant-power-conversion-for-offline-converter-appli/ (accessed on 27 October 2025).
























| Property | Si | 4H-SiC | GaN | References |
|---|---|---|---|---|
| Bandgap Energy(eV) | 1.12 | 3.3 | 3.45 | [20] |
| Critical Electric Field (MV/cm) | 0.3 | 2.8 | 3.3 | [21] |
| Electron Mobility (cm2/V·s) | 1400 | 900 | 2000 | [22] |
| Electron Saturation Velocity (Mcm/s) | 10 | 22 | 27–30 | [23] |
| Thermal Conductivity (W/cm·K) | 1.5 | 4.9 | 1.3 | [24] |
| Relative permittivity, εr | 11.8 | 9.7 | 9.6 | [20] |
| Company | Market Growth (2020–2025) | Approx. 2025 Market Value | Headquarters | Market Segment | Technology Focus | Competitive Edge & Strategic Positioning | Ref. |
|---|---|---|---|---|---|---|---|
| Innoscience | 120% | $100M+ | Suzhou, China | Consumer/Industrial | Fully Integrated GaN | Largest vertically integrated GaN manufacturer; rapid global expansion | [56] |
| Infineon/GaN System | 95% | $150M+ | Munich, Germany/Ottawa, ON, Canada | Industrial/Automotive | GaN & SiC Hybrid | Pioneer of 300 mm GaN wafer production; broad industrial and automotive portfolio | [57] |
| Navitas Semiconductor | 110% | $120M | Torrance, CA, USA | Consumer Electronics (GaN) | GaN Power ICs | Dominates fast charger segment; strong OEM partnerships (Xiaomi, Oppo) | [58] |
| EPC | 70% | $90M | El Segundo, CA, USA | Telecom/Datacenter | GaN Discrete Devices | High-performance GaN transistors for telecom, datacenter, and industrial markets | [59] |
| Transphorm/Renesas | 85% | $80M | Goleta, CA, USA/Tokyo, Japan | EV/Motor Drives | JEDEC-qualified GaN | Focus on EV onboard chargers and motor drives; industry certifications | [60] |
| Texas Instruments | 65% | $70M | Dallas, TX, USA | Industrial/automotive, and data center | Mixed Si & GaN | Diversified GaN portfolio targeting industrial applications | [61] |
| Nexperia | 65% | $60M | Nijmegen, The Netherlands | Multi-Sector (Industrial, Automotive, Energy) | Si & GaN Hybrid | Expanding GaN adoption for mainstream consumer power supplies | [62] |
| Voltage (V) | Manufacturer | Part Number | Semiconductor | Current (A) | RDS(on) (mΩ) | Gate Charge Qg (nC) | Driving Mode | Package | Ref. |
|---|---|---|---|---|---|---|---|---|---|
| 500 | Fujitsu (Tokyo, Japan) | 2SK3397 | Si | 100 | 14 | 100 | Cascode (D-mode) | TO-220 | [85] |
| 600 | Panasonic (Osaka, Japan) | PA09N06 | Si | 26 | 56 | 5 | Normally off(E-mode) | DFN | [86] |
| 600 | Infineon (Munich, Germany) | IPB60R099CFN3 | Si | 31 | 70 | 5.8 | Normally off (E-mode) | PG-DSO-20 | [87] |
| 600 | Infineon (Munich, Germany) | IKQ40N60D2 | SiC | 40 | 40 | 6 | Normally off (E-mode) | TO-247 | [88] |
| 900 | ROHM (Kyoto, Japan) | SCT2080KE | SiC | 40 | 80 | 5 | Normally off (E-mode) | TO-220 | [89] |
| 900 | Nexperia (Nijmegen, Netherlands) | NSK10N90TS5 | SiC | 10 | 90 | 3.5 | Normally off (E-mode) | TO-220 | [90] |
| 1200 | Toshiba (Tokyo, Japan) | TW070J120B | SiC | 20 | 50 | 3.2 | Normally off (E-mode) | TO-247 | [91] |
| 1200 | Wolfspeed (Durham, NC, USA) | C3M0075120J2 | SiC | 34 | 75 | 8 | Normally off (E-mode) | TO-247 | [92] |
| 1200 | Onsemi (Phoenix, AZ, USA) | SCT3030N120J | SiC | 35 | 30 | 5 | Normally off (E-mode) | TO-247 | [93] |
| 200 | EPC (El Segundo, CA, USA) | EPC2210 | GaN | 48 | 8 | 11.4 | Normally off (E-mode) | LGA | [94] |
| 650 | TI (Dallas, TX, USA) | LMG5200 | GaN | 55 | 30 | 35 | Direct Drive (D-mode) | VQFN | [95] |
| 650 | GaN Systems (Ottawa, ON, Canada) | GS06508T | GaN | 60 | 25 | 14.2 | Normally off (E-mode) | GaNPX | [96] |
| 650 | GaN Systems (Ottawa, ON, Canada) | GS06506T | GaN | 80 | 18 | 16 | Normally off (E-mode) | Die(E-Mode) | [97] |
| 900 | Transphorm (Goleta, CA, USA) | TP90H050WS | GaN | 34 | 50 | 15 | Cascode(D-mode) | TO-247 | [98] |
| 1200 | GaNPower GPI (Shanghai, China) | GPI1200V1 | GaN | 15 | 95 | 4.15 | Normally off (E-mode) | TO-252 | [99] |
| 1200 | Innoscience (Suzhou, China) | IS1200HV | GaN | 25 | 50 | 6.1 | Normally off (E-mode) | PQFN | [100] |
| 1200 | Ultrabandtech (Shanghai, China) | UPCC6G48 | GaN | 48 | 12 | 6.5 | Normally off (E-mode) | TO-247 | [101] |
| Vendor | Products | Technology | Development | Product Types | Voltage Range(V) | Major Packages & Key Notes | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| Open Market | Closed Market | Foundry Services | Collaborative | In-House | Discreate | IC | Module | |||
| Infineon | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 400–1200 | DFN8080, TOLL, EasyPACK, CoolGaN modules; automotive & data center focus [109] | ||
| ROHM Semiconductor | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 150–1200 | DFN5060, TOLL, EcoGaN HEMTs with copper clip packaging; automotive & industrial grade [142] | ||
| Navitas Semiconductor | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 650, 1200 | DFN, LGA; GaNFast ICs with high-frequency integration for mobile & consumer power [143] | ||
| EPC | ✓ | ✓ | ✓ | ✓ | ✓ | 15–650 | LGA, DFN, SMD; industry leader for low-mid voltage GaN transistors [144] | |||
| Innoscience | ✓ | ✓ | ✓ | ✓ | ✓ | 40–650 | QFN, DFN; leading open market share, focus on automotive & mobile [121] | |||
| GaNPower International | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 650, 1200 | TO-220, TO-263, DFN, QFN; high-voltage industrial & grid power focus [121,145] | |
| Mitsubishi Electric | ✓ | ✓ | ✓ | ✓ | ✓ | 650, 1200 | Automotive, industrial semiconductor GaN solutions with R&D focus [146] | |||
| Microchip Technology | ✓ | ✓ | ✓ | ✓ | 40–650 | Integrated circuits, scalable high-frequency GaN solutions [146] | ||||
| On Semiconductor | ✓ | ✓ | ✓ | ✓ | ✓ | 40–1200 | Industrial automation, renewable energy and smart mobility [146] | |||
| Texas Instruments | ✓ | ✓ | ✓ | ✓ | 40–650 | Diverse GaN ICs and modules for telecom, industrial and automotive [146] | ||||
| Panasonic | ✓ | ✓ | ✓ | ✓ | 650 | Strength in automotive and renewable sectors, advanced packaging [147] | ||||
| Qorvo | ✓ | ✓ | ✓ | ✓ | 40–650 | RF and power GaN ICs for wireless and defense applications [146] | ||||
| Nexperia | ✓ | ✓ | ✓ | ✓ | 40–650 | GaN FETs with high power density and low conduction loss [148] | ||||
| Renesas Electronics | ✓ | ✓ | ✓ | ✓ | 300–700 | GaN-on-Si cascode tech, automotive and industrial sectors [149] | ||||
| Sanken Electric | ✓ | ✓ | ✓ | ✓ | 650 | Power conversion solutions with advanced packaging [146] | ||||
| Company | Key Innovations & Technologies | Voltage Rating (V) | Power Rating (W) | Target Applications | Notable Products and Milestones | References |
|---|---|---|---|---|---|---|
| Navitas Semiconductor (Torrance, CA, USA) | Monolithic GaN Power ICs with integrated drivers and transistors | 650 V | Up to 300 W | Fast chargers, data centers, automotive DC-DC | NV7 Series, NV625x Power ICs; 650 V bidirectional GaNFast ICs for EV onboard chargers | [189] |
| Infineon Technologies (Munich, Germany) | Scalable 300 mm GaN wafers; CoolGaN automotive-grade HEMTs | 600–650 V | Up to 500 W | Industrial power, automotive, telecom | First 300 mm GaN wafers; CoolGaN devices for server power and EV auxiliary power | [108,110,111,190] |
| Texas Instruments (Dallas, TX, USA) | Integrated GaN power stages with advanced gate drivers | 650 V | Up to 300 W | Data centers, telecom, automotive | LMG3650 650 V Totem-Pole GaN power stages; >98% efficiency; integrated protection | [191,192] |
| Efficient Power Conversion (El Segundo, CA, USA) | Discrete enhancement-mode GaN FETs with ultra-low on-resistance | 100 V | Up to 150 W | Telecom, data centers, industrial automation | EPC2367 100 V e-GaN FET with 1.2 mΩ RDS(on), high thermal performance | [193] |
| Power Integrations (San Jose, CA, USA) | GaN ICs with integrated boost and Totem-Pole converters | Up to 1700 V | Up to 600 W | AC-DC adapters, industrial, automotive | InnoSwitch™ and InnoSwitch™3-GaN series; 1700 V GaN switcher ICs for high voltage industrial power systems | [194] |
| Transphorm (Goleta, CA, USA) | Automotive-qualified D-mode and E-mode GaN power devices; AEC-Q101 certified | 600–900 V | Up to 400 W | Automotive, industrial power | GaN devices with industry-leading reliability for automotive applications; emphasis on high-voltage robustness | [195,196] |
| Device | VDS (V) | VGS (V) | IDmax (A) | RDS(on) (mΩ) | RDS(on) ∗ QG (mΩ·nC) | RDS(on) ∗ Qrr (mΩ·µC) | RDS(on) ∗ Eoss (mΩ·µJ) | Ref. |
|---|---|---|---|---|---|---|---|---|
| CoolGaN™ [IG060R070D1] Infineon Technologies (Munich, Germany) | 600 | −5 to +7 | 31 | 55 | 319 | 0 | 352 | [206] |
| GaN eMode [GS66508T] GaN Systems Inc. (Ottawa, ON, Canada) | 650 | −5 to +7 | 30 | 50 | 305 | 0 | 400 | [96] |
| GaN eMode [GS66516T] GaN Systems Inc. (Ottawa, ON, Canada) | 650 | −5 to +7 | 60 | 25 | 355 | 0 | 425 | [207] |
| GaN Cascode [TP65H050WS] Transphorm Inc. (Goleta, CA, USA) | 650 | −4 to +15 (cascode) | 36 | 50 | 800 | 6.25 | 800 | [208] |
| GaN Cascode [TPH3205WS] Transphorm Inc. (Goleta, CA, USA) | 650 | −4 to +15 (cascode) | 36 | 52 | 1456 | 7.07 | 728 | [209] |
| SiC MOSFET [C3M0060065K] Wolfspeed Inc. (Durham, NC, USA) | 650 | ±15 | 37 | 60 | 2760 | 9.06 | 900 | [210] |
| SiC MOSFET [SCT3030AL] ROHM Semiconductor (Kyoto, Japan) | 650 | ±15 | 70 | 30 | 3120 | 3.9 | 510 | [211] |
| SiC MOSFET [SCT3060AL] ROHM Semiconductor (Kyoto, Japan) | 650 | ±15 | 39 | 60 | 3480 | 3.33 | 500 | [212] |
| SiC MOSFET [C3M0065090D] Wolfspeed Inc. (Durham, NC, USA) | 900 | ±15 | 36 | 65 | 2275 | 9.425 | 1040 | [213] |
| SiC MOSFET [C3M0075120K] Wolfspeed Inc. (Durham, NC, USA) | 1200 | ±15 | 30 | 75 | 3975 | 19.05 | 2475 | [214] |
| SiC MOSFET [SCT3040KLHR] (ROHM Semiconductor, Kyoto, Japan) | 1200 | ±15 | 55 | 40 | 4280 | 4.6 | 500 | [215] |
| Si MOSFET [IPW60R080P7] Infineon Technologies (Munich, Germany) | 650 | 10 (typically) | 37 | 69 | 3519 | 200.1 | 379.5 | [216] |
| Si MOSFET CoolMOS [IPP60R070CFD7] Infineon Technologies (Munich, Germany) | 650 | 10 (typically) | 31 | 57 | 3819 | 32.49 | 438.9 | [217] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mistri, S.; Langpoklakpam, C.; Elangovan, S.; Kuo, H.-C. A Comprehensive Study on GaN Power Devices: Reliability, Performance, and Application Perspectives. Electronics 2025, 14, 4430. https://doi.org/10.3390/electronics14224430
Mistri S, Langpoklakpam C, Elangovan S, Kuo H-C. A Comprehensive Study on GaN Power Devices: Reliability, Performance, and Application Perspectives. Electronics. 2025; 14(22):4430. https://doi.org/10.3390/electronics14224430
Chicago/Turabian StyleMistri, Susmita, Catherine Langpoklakpam, Surya Elangovan, and Hao-Chung Kuo. 2025. "A Comprehensive Study on GaN Power Devices: Reliability, Performance, and Application Perspectives" Electronics 14, no. 22: 4430. https://doi.org/10.3390/electronics14224430
APA StyleMistri, S., Langpoklakpam, C., Elangovan, S., & Kuo, H.-C. (2025). A Comprehensive Study on GaN Power Devices: Reliability, Performance, and Application Perspectives. Electronics, 14(22), 4430. https://doi.org/10.3390/electronics14224430

