Toward Intelligent and Sustainable Wireless Environments with Hybrid and AI-Enhanced RIS Strategies
Abstract
1. Introduction
2. Related Works
3. Materials and Methods
3.1. Baseline RIS Configurations
3.1.1. Focusing Lens
3.1.2. Phase Gradient Reflector
3.2. Optimization-Based RIS Configurations
3.2.1. Gradient-Based Optimization
3.2.2. Hybrid Mixture-of-Experts
3.2.3. Convolutional Neural Network-Based Gating
3.3. Simulation Environment
4. Results
4.1. Impact of RIS Deployment on Signal Propagation
4.2. Baseline RIS Configurations’ Results
4.2.1. Evaluation of Focusing Lens
4.2.2. Evaluation of Phase Gradient Reflector
4.3. Optimization-Based RIS Configurations’ Results
4.3.1. Evaluation of Gradient-Based Optimization
4.3.2. Evaluation of Hybrid Mixture-of-Experts
4.3.3. Evaluation of Convolutional Neural Network-Based Gating
4.4. Comparative Performance Evaluation of RIS Configurations
4.4.1. Heatmap Analysis of Expert Selection
4.4.2. Comparative Path Gain Evaluation
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| MoE | Mixture-of-Experts |
| CNN | Convolutional Neural Network |
| CSI | Channel State Information |
| FL | Focusing Lens |
| PGR | Phase Gradient Reflector |
| GBO | Gradient-Based Optimization |
| RIS | Reconfigurable Intelligent Surfaces |
| LoS | Line-of-Sight |
| NLoS | Non-Line-of-Sight |
References
- Citroni, R.; Di Paolo, F.; Livreri, P. Progress in THz Rectifier Technology: Research and Perspectives. Nanomaterials 2022, 12, 2479. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.-S.; Yuen, C.; De Rosny, J.; Tretyakov, S. Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and the Road Ahead. IEEE J. Sel. Areas Commun. 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Jung, M.; Saad, W.; Debbah, M.; Hong, C.S. On the Optimality of Reconfigurable Intelligent Surfaces (RISs): Passive Beamforming, Modulation, and Resource Allocation. IEEE Trans. Wirel. Commun. 2021, 20, 4347–4363. [Google Scholar] [CrossRef]
- Model, A.G.M. Reradiation and Scattering from a Reconfigurable Intelligent Surface: A General Macroscopic Model. Signal Process. 2022, 5, 7. [Google Scholar]
- Vitucci, E.M.; Albani, M.; Kodra, S.; Barbiroli, M.; Degli-Esposti, V. An Efficient Ray-Based Modeling Approach for Scattering from Reconfigurable Intelligent Surfaces. IEEE Trans. Antennas Propag. 2024, 72, 2673–2685. [Google Scholar] [CrossRef]
- Shabanpour, J.; Simovski, C.; Geraci, G. Physically Consistent RIS: From Reradiation Mode Optimization to Practical Realization. arXiv 2024, arXiv:2409.17738. [Google Scholar] [CrossRef]
- Yang, S.; Wan, Z.; Ning, B.; Mei, W.; An, J.; Eldar, Y.C.; Yuen, C. Flexible Intelligent Metasurface-Aided Wireless Communications: Architecture and Performance. arXiv 2025, arXiv:2503.11112. [Google Scholar] [CrossRef]
- Wang, B.; Pan, C.; Ren, H.; Yu, Z.; Zhang, Y.; Liu, M.; Zhou, G. Beamforming Design for Double-Active-RIS-Aided Communication Systems with Inter-Excitation. IEEE Trans. Wirel. Commun. 2025, 24, 5855–5870. [Google Scholar] [CrossRef]
- Wang, J.; Tang, X.; Liu, J.; Zhai, Z.; Du, Q.; Liu, N. Multiple STAR-RISs-Empowered Multi-User Communications with Diversified QoS Provisioning. IEEE Trans. Veh. Technol. 2025, 1–6. [Google Scholar] [CrossRef]
- Zhang, Z. Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface-Assisted Non-Orthogonal Multiple Access Wireless Education Network Under Multiple Interference Devices. Symmetry 2025, 17, 491. [Google Scholar] [CrossRef]
- Do, T.N.; Kaddoum, G.; Nguyen, T.L.; Da Costa, D.B.; Haas, Z.J. Multi-RIS-Aided Wireless Systems: Statistical Characterization and Performance Analysis. IEEE Trans. Commun. 2021, 69, 8641–8658. [Google Scholar] [CrossRef]
- Chen, C.; Wu, F.; Zhang, C.; Cheng, D.; Fan, W.; Liu, Y. Joint Optimization of RIS-User Association and Beamforming Design for Multi-RIS-Assisted Multi-User Systems. IEEE Wirel. Commun. Lett. 2025, 14, 3575–3579. [Google Scholar] [CrossRef]
- Pereira, A.; Conceição, F.; Gomes, M.; Dinis, R. Genetic Resource Allocation Algorithm for Panel-Based Large Intelligent Surfaces. Electronics 2025, 14, 3107. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef]
- Eva, A.J.; Sahal, M.; Amin, R.; Khandaker, M.R.; Khan, R.T.; Tariq, F.; Mahmud, A.A. Maximising Achievable Rate Using Intelligent Reflecting Surface in 6G Wireless Communication Systems. Appl. Sci. 2025, 15, 8732. [Google Scholar] [CrossRef]
- Wei, X.; Mei, W.; Wu, Q.; Ning, B.; Chen, Z. Movable Antennas Meet Intelligent Reflecting Surface: When Do We Need Movable Antennas? In Proceedings of the 2025 IEEE Wireless Communications and Networking Conference (WCNC), Milan, Italy, 24–27 March 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 1–6. [Google Scholar]
- Sun, Y.; Xu, H.; Ning, B.; Cheng, Z.; Ouyang, C.; Yang, H. Sum-Rate Optimization for RIS-Aided Multiuser Communications with Movable Antennas. IEEE Wirel. Commun. Lett. 2024, 14, 450–454. [Google Scholar] [CrossRef]
- Zhang, Y.; Dey, I.; Marchetti, N. RIS-Aided Wireless Communication with Movable Elements Geometry Impact on Performance. arXiv 2024, arXiv:2405.00141. [Google Scholar] [CrossRef]
- Yu, L.; Ren, Y. Achievable Rate Optimization for Reconfigurable Intelligent Surface-Aided Multi-User Movable Antenna Systems. Sensors 2025, 25, 4694. [Google Scholar] [CrossRef]
- Yang, S.; Lyu, W.; Xiu, Y.; Zhang, Z.; Yuen, C. Active 3D Double-RIS-Aided Multi-User Communications: Two-Timescale-Based Separate Channel Estimation via Bayesian Learning. IEEE Trans. Commun. 2023, 71, 3605–3620. [Google Scholar] [CrossRef]
- Peng, C.; Deng, H.; Xiao, H.; Qian, Y.; Zhang, W.; Zhang, Y. Two-Stage Channel Estimation for Semi-Passive RIS-Assisted Millimeter Wave Systems. Sensors 2022, 22, 5908. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X. Integrated Sensing and Communication Beamforming Design in RIS-Assisted Symbiotic Radio System. Electronics 2025, 14, 2016. [Google Scholar] [CrossRef]
- Dong, X.; Fei, Z.; Hua, M.; Huang, J.; Wang, X.; Xiao, Y. Reconfigurable Intelligent Surfaces for ISAC: CRB Analysis and Optimization for Joint Angle and Radial Velocity Estimation. IEEE Trans. Veh. Technol. 2025, 1–15. [Google Scholar] [CrossRef]
- Sun, J.; Yang, M.; Liu, M.; Liu, Y. Active RIS Assisted 3D Positioning in Scattering Environments. IEEE Trans. Veh. Technol. 2025, 1–6. [Google Scholar] [CrossRef]
- Gudla, V.V.; Kumaravelu, V.B.; Imoize, A.L.; Castillo Soria, F.R.; Sujatha, A.B.; John Kennedy, H.S.; Jadhav, H.K.; Murugadass, A.; Sur, S.N. Performance Analysis of Reconfigurable Intelligent Surface-Assisted Millimeter Wave Massive MIMO System Under 3GPP 5G Channels. Information 2025, 16, 396. [Google Scholar] [CrossRef]
- Verdecia-Peña, R.; Martinez-de-Rioja, D.; Alonso, J.I.; Carrasco, E. mmWave Dual-Coverage RIS-Aided 6G Wireless Communications: Experimental Demonstration. IEEE Wirel. Commun. Lett. 2025, 14, 3630–3634. [Google Scholar] [CrossRef]
- Wang, Z.; Nie, Y. Experimental Studies on Low-Latency RIS Beam Tracking: Edge-Integrated and Visually Steered. Network 2025, 5, 22. [Google Scholar] [CrossRef]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef]
- Enahoro, S.; Ekpo, S.; Al-Yasir, Y.; Uko, M.; Elias, F.; Unnikrishnan, R.; Alabi, S. Unified Framework for RIS-Enhanced Wireless Communication and Ambient RF Energy Harvesting: Performance and Sustainability Analysis. Technologies 2025, 13, 244. [Google Scholar] [CrossRef]
- Gao, D.; Yin, M.; Xia, N.; Liu, X.; Wang, D.; Peng, M. Energy Efficiency Optimization for Collaborative Task Offloading in RIS-Empowered Heterogeneous Wireless Computing Power Networks. IEEE Trans. Commun. 2025. [Google Scholar] [CrossRef]
- Sucuoglu, H.S. Development of Real-Time Fire Detection Robotic System with Hybrid-Cascade Machine Learning Detection Structure. Processes 2025, 13, 1712. [Google Scholar] [CrossRef]
- Pivoto, D.G.S.; de Figueiredo, F.A.; Cavdar, C.; de Lima Tejerina, G.R.; Mendes, L.L. A Comprehensive Survey of Machine Learning Applied to Resource Allocation in Wireless Communications. IEEE Commun. Surv. Tutor. 2025. [Google Scholar] [CrossRef]
- Huang, C.; Alexandropoulos, G.C.; Zappone, A.; Yuen, C.; Debbah, M. Deep Learning for UL/DL Channel Calibration in Generic Massive MIMO Systems. In Proceedings of the ICC 2019-2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Ding, Q.; Zhu, R.; Liu, H.; Ma, M. An Overview of Machine Learning-Based Energy-Efficient Routing Algorithms in Wireless Sensor Networks. Electronics 2021, 10, 1539. [Google Scholar] [CrossRef]
- Hoydis, J.; Cammerer, S.; Aoudia, F.A.; Nimier-David, M.; Maggi, L.; Marcus, G.; Vem, A.; Keller, A. Sionna. 2022. Available online: https://nvlabs.github.io/sionna/ (accessed on 15 December 2024).
- Hoydis, J.; Aoudia, F.A.; Cammerer, S.; Nimier-David, M.; Binder, N.; Marcus, G.; Keller, A. Sionna RT: Differentiable Ray Tracing for Radio Propagation Modeling. In Proceedings of the 2023 IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur, Malaysia, 4–8 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 317–321. [Google Scholar]
- Degli-Esposti, V.; Vitucci, E.M.; Renzo, M.D.; Tretyakov, S.A. Reradiation and Scattering From a Reconfigurable Intelligent Surface: A General Macroscopic Model. IEEE Trans. Antennas Propag. 2022, 70, 8691–8706. [Google Scholar] [CrossRef]
- Yildiz, O. Digital Twin-Based Ray Tracing Analysis for Antenna Orientation Optimization in Wireless Networks. Electronics 2025, 14, 3023. [Google Scholar] [CrossRef]
- Blender Foundation Blender. Available online: https://www.blender.org (accessed on 15 December 2024).
- OpenStreetMap Foundation OpenStreetMap. Available online: https://www.openstreetmap.org (accessed on 10 December 2024).
- ITU. Effects of Building Materials and Structures on Radiowave Propagation Above About 100 MHz; ITU–R P.2040–3; ITU: Geneva, Switzerland, 2023. [Google Scholar]
- Amin, S.; Ahmed, B.; Amin, M.; Abbasi, M.I.; Elahi, A.; Aftab, U. Establishment of Boundaries for Near-Field, Fresnel and Fraunhofer-Field Regions. In Proceedings of the 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 13–16 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 57–60. [Google Scholar]
- Wu, Q.; Zhang, R. Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network. IEEE Commun. Mag. 2019, 58, 106–112. [Google Scholar] [CrossRef]
- Huang, C.; Hu, S.; Alexandropoulos, G.C.; Zappone, A.; Yuen, C.; Zhang, R.; Di Renzo, M.; Debbah, M. Holographic MIMO Surfaces for 6G Wireless Networks: Opportunities, Challenges, and Trends. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Tang, W.; Chen, M.; Li, X.; Dai, J.Y.; Han, Y.; Di Renzo, M.; Cui, T.J. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental validation. IEEE Trans. Wirel. Commun. 2021, 20, 421–439. [Google Scholar] [CrossRef]





















| Approach/Reference | Methodology | Key Limitation | Contribution Gap Addressed by the Proposed Work |
|---|---|---|---|
| Wu and Zhang [14] | Joint active–passive beamforming optimization | Static optimization with perfect channel state information (CSI); lacks scalability and adaptability to dynamic or near-field multiuser scenarios | Introduces a learning-based CNN-gated MoE for adaptive, real-time RIS control across varying channels. |
| Do et al. [11] | Statistical modeling of multi-RIS-aided systems | Purely analytical and static framework assuming perfect CSI; no adaptive or learning-based phase control | Replaces static modeling with adaptive data-driven control capable of real-time RIS phase optimization. |
| Yang et al. [20] | Optimization-based RIS configuration | High computational complexity | Enables adaptive and energy-efficient RIS control aligned with sustainable communication goals. |
| Wang et al. [8] | Double-active-RIS beamforming optimization | High cost, no learning | Introduces a data-driven CNN-gated Offers a CNN-gated MoE model achieving lower complexity and better generalization in dynamic propagation. |
| Enahoro et al. [29] | Analytical framework for RF energy harvesting | Static analytical model without adaptive control; limited generalization to dynamic environments | Proposes a scalable data-driven framework replacing iterative optimization with efficient adaptive control |
| Hyperparameter | Value |
|---|---|
| Optimizer | Adam |
| Learning rate schedule | PiecewiseConstantDecay @ iter 200) |
| Total iterations | 1000 |
| Warm-up iterations | 60 |
| TV weight | tv0 (iter ≥ 200) |
| Alignment loss weight | = 0.30 (phase ↔ mixed-phase) |
| Mode-power init | (0.8, 0.1, 0.1) |
| UNet base channels | 32 (encoder–decoder) |
| Output activation | per-cell, per-mode) |
| Parameter | Value |
|---|---|
| Carrier frequency | 3.5 GHz |
| Bandwidth | 20 MHz |
| Tx array | (TR 38.901), VH pol. |
| Tx position | (366.4, −78.5, 30.0) m |
| Tx orientation | [0,0,0] (roll, pitch, yaw) |
| Rx antenna | dipole, cross pol., height 1.5 m |
| Rx positions | Rx1: (310.2, −43.24, 1.5) m Rx2: (278.4, −138.8, 1.5) m Rx3: (295.0, −218.0, 1.5) m |
| RIS physical size | spacing) |
| RIS position | (271.6, −106.5, 40.0) m |
| RIS orientation | [0,0,0] (roll, pitch, yaw) |
| Scene construction | Blender + OSM → Mitsuba → Sionna RT |
| Number of reflections | 3 |
| Resolution for rendering | [1000, 600] |
| Material model | ITU-R P.2040 |
| Methods | (i) Benchmark methods (Focusing Lens, Phase Gradient Reflector) (ii) Optimization methods (Gradient-based Optimization, Hybrid Mixture-of-Experts, CNN-gating) |
| Parameters | PGR | FL | CNN-Gating | MoE | GBO |
|---|---|---|---|---|---|
| Avg path gain | −112.0 | −97.0 | −94.0 | −93.5 | −92.0 |
| # of Params (Trainable) | 0 | 0 | 500,000 | 2116 | 4235 |
| FLOPs/iter (G) | 0.0 | 0.0 | 1.2 | 0.05 | 0.2 |
| Iter time | 0.0 | 0.0 | 20.0 | 15.0 | 30.0 |
| Iters @0.1dB | 0 | 0 | 200 | 120 | 180 |
| Complexity (0–100) | 0.0 | 0.0 | 91.7 | 28.6 | 51.9 |
| Expert-alignment (rad) | 0.0 | 0.0 | 0.8 | 0.6 | 1.2 |
| Phase-TV | 0.2 | 0.3 | 0.7 | 0.8 | 1.5 |
| Amplitude uniformity (σ) | 0.0 | 0.0 | 0.1 | 0.15 | 0.3 |
| Interpretability (0–100) | 100 | 96.8 | 58.2 | 43.8 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yildiz, O. Toward Intelligent and Sustainable Wireless Environments with Hybrid and AI-Enhanced RIS Strategies. Electronics 2025, 14, 4421. https://doi.org/10.3390/electronics14224421
Yildiz O. Toward Intelligent and Sustainable Wireless Environments with Hybrid and AI-Enhanced RIS Strategies. Electronics. 2025; 14(22):4421. https://doi.org/10.3390/electronics14224421
Chicago/Turabian StyleYildiz, Onem. 2025. "Toward Intelligent and Sustainable Wireless Environments with Hybrid and AI-Enhanced RIS Strategies" Electronics 14, no. 22: 4421. https://doi.org/10.3390/electronics14224421
APA StyleYildiz, O. (2025). Toward Intelligent and Sustainable Wireless Environments with Hybrid and AI-Enhanced RIS Strategies. Electronics, 14(22), 4421. https://doi.org/10.3390/electronics14224421
