MLEDNet: Multi-Directional Learnable Edge Information-Assisted Dense Nested Network for Infrared Small Target Detection
Abstract
1. Introduction
- (1)
- We propose an MLEEM, which adaptively captures multi-directional edge features and hierarchically integrates them into the dense nested module. This integration enhances the model’s capacity to extract discriminative edge features from infrared targets, particularly under challenging conditions such as low contrast.
- (2)
- A ResCSAM-FFM was proposed. The ResCSAM-FFM enables the multi-level features output by the DNAM to better represent small targets and suppress background interference, thereby achieving a better feature fusion performance.
- (3)
- A new multi-directional learnable edge-assisted dense nested attention network (MLEDNet) is proposed. The experimental results show that our model demonstrates excellent performance.
2. Related Works
2.1. Traditional Algorithms
2.2. U-Net for Infrared Small Target Detection
2.3. IRST Methods Incorporating Edge Information
3. Methods
3.1. Overall Architecture
3.2. Feature Extraction with MLEEM
3.3. Feature Fusion Module Guided by ResCSAM
3.4. Loss Function
4. Results
4.1. Datasets
4.2. Evaluation Metrics
- (1)
- IoU: A pixel-level evaluation metric that calculates the overlap ratio between predicted and ground-truth bounding boxes. The IoU is expressed as follows:
- (2)
- Pd: A target-level evaluation index, indicating the proportion of correctly predicted targets to the total number of targets. The centroid of the target is determined using the eight-connected method. The target sets a predefined centroid deviation threshold of 3; if the centroid deviation is less than 3, the target prediction is considered correct. The Pd is expressed as follows:
- (3)
- Fa: is a pixel-level evaluation index, indicating the ratio of false predicted target pixels and all pixels in the whole dataset.
4.3. Implementation Details
4.4. Comparison to State-of-the-Art Methods
4.5. Ablation Study
- (1)
- DNAM-ResCSAM: This model is based on the model we proposed by removing the MLEEM part, that is, adding ResCSAM to the feature fusion part of the original DNANet.
- (2)
- MLEEM-DNAM: Based on the proposed MLEDNet, ResCSAM is removed. This model is used to prove the role of the feature fusion module based on ResCSAM in the proposed model.
- (3)
- MLEDNet-noLHDC: LHDC is removed from MLEEM, and the rest remains the same as the model we proposed.
- (4)
- MLEDNet-noLVDC: LVDC is removed from MLEEM, and the rest remains the same as the model we proposed.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, T.; Guo, G.; Li, Z.; Yang, Z. Infrared small target detection method based on high-low-frequency semantic reconstruction. IEEE Geosci. Remote Sens. Lett. 2024, 21, 6012505. [Google Scholar] [CrossRef]
- Zang, D.; Su, W.; Zhang, B.; Liu, H. DCANet: Dense Convolutional Attention Network for infrared small target detection. Measurement 2025, 240, 115595. [Google Scholar] [CrossRef]
- Rawat, S.S.; Verma, S.K.; Kumar, Y. Review on recent development in infrared small target detection algorithms. Procedia Comput. Sci. 2020, 167, 2496–2505. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, H.; Zhao, Q.; Pu, C.; Yang, L. An Asymmetric Intensive Interactive Fusion Network for Infrared Small Target Detection. IEEE Geosci. Remote Sens. Lett. 2025, 22, 6002605. [Google Scholar] [CrossRef]
- Wang, X.; Han, C.; Li, J.; Nie, T.; Li, M.; Wang, X.; Huang, L. Multiscale Feature Extraction U-Net for Infrared Dim- and Small-Target Detection. Remote Sens. 2024, 16, 643. [Google Scholar] [CrossRef]
- Zhao, M.; Li, W.; Li, L.; Hu, J.; Ma, P.; Tao, R. Single-frame infrared small-target detection: A survey. IEEE Geosci. Remote Sens. Mag. 2022, 10, 87–119. [Google Scholar] [CrossRef]
- Han, J.; Moradi, S.; Faramarzi, I.; Zhang, H.; Li, N. Infrared small target detection based on the weighted strengthened local contrast measure. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1670–1674. [Google Scholar] [CrossRef]
- Hou, Q.; Wang, Z.; Tan, F.; Zhao, Y.; Zhang, W. RISTDnet: Robust Infrared Small Target Detection Network. IEEE Geosci. Remote Sens. Lett. 2021, 99, 7000805. [Google Scholar] [CrossRef]
- Li, B.; Xiao, C.; Wang, L.; Wang, L.; Lin, Z.; Li, M.; An, W.; Guo, Y. Dense Nested Attention Network for Infrared Small Target Detection. IEEE Trans. Image Process. 2023, 32, 1745–1758. [Google Scholar] [CrossRef]
- Zhang, T.; Li, L.; Cao, S.; Pu, T.; Peng, Z. Attention-Guided Pyramid Context Networks for Detecting Infrared Small Target Under Complex Background. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 4250–4261. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, N.; Zhang, J.; Zhang, W.; Sun, C. Location-Guided Dense Nested Attention Network for Infrared Small Target Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 18535–18548. [Google Scholar] [CrossRef]
- Wu, X.; Hong, D.; Chanussot, J. UIU-Net: U-Net in U-Net for infrared small object detection. IEEE Trans. Image Process. 2022, 32, 364–376. [Google Scholar] [CrossRef]
- Rivest, J.; Fortin, R. Detection of dim targets in digital infrared imagery by morphological image processing. Opt. Eng. 1996, 35, 1886–1893. [Google Scholar] [CrossRef]
- Chen, C.; Li, H.; Wei, Y.; Xia, T.; Tang, Y. A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens. 2013, 52, 574–581. [Google Scholar] [CrossRef]
- Wu, L.; Ma, Y.; Fan, F.; Wu, M.; Huang, J. A double-neighborhood gradient method for infrared small target detection. IEEE Geosci. Remote Sens. Lett. 2021, 10, 1476–1480. [Google Scholar] [CrossRef]
- Gao, C.; Meng, D.; Yang, Y.; Wang, Y.; Zhou, X.; Hauptmann, A.G. Infrared patch-image model for small target detection in a single image. IEEE Trans. Image Process. 2013, 22, 4996–5009. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y.; Zhou, F.; Barnard, K. Asymmetric Contextual Modulation for Infrared Small Target Detection. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2021; pp. 949–958. [Google Scholar]
- Yang, J.; Deng, S.; Zhang, F.; Pan, A.; Yang, Y. FATCNet: Feature Adaptive Transformer and CNN for Infrared Small Target Detection. IEEE Trans. Aerosp. Electron. Syst. 2024, 6, 9231–9246. [Google Scholar] [CrossRef]
- Wu, H.; Huang, X.; He, C.; Xiao, H.; Luo, S. Infrared Small Target Detection With Swin Transformer-Based Multiscale Atrous Spatial Pyramid Pooling Network. IEEE Trans. Instrum. Meas. 2025, 74, 5003914. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, R.; Zheng, B.; Wang, H.; Fu, Y. Infrared small target detection with scale and location sensitivity. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 17490–17499. [Google Scholar]
- Zhang, S.; Wang, Z.; Xing, Y.; Lin, Y.; Su, X.; Zhang, Y. SCAFNet: Semantic-Guided Cascade Adaptive Fusion Network for Infrared Small Target Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5007712. [Google Scholar] [CrossRef]
- Du, X.; Cheng, K.; Zhang, J.; Wang, Y.; Yang, F.; Zhou, W.; Lin, Y. Infrared Small Target Detection Algorithm Based on Improved Dense Nested U-Net Network. Sensors 2025, 25, 814. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Ge, S.; Bao, K.; Yan, C.; Zeng, D. Learning Shape-Biased Representations for Infrared Small Target Detection. IEEE Trans. Multimed. 2024, 26, 4681–4692. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, M.; Yang, Z.; Yuan, Y.; Wang, Q. Edge-Guided Perceptual Network for Infrared Small Target Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5643510. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, J.; Huang, Y.; Wu, F.; Cui, X.; Peng, Z. MDIGCNet: Multidirectional Information-Guided Contextual Network for Infrared Small Target Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 2063–2076. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, X.; Wu, C.; Ji, P.; Ru, J. A Gradient Vector Self-Learning Network for Infrared Small Target Detection. IEEE Geosci. Remote Sens. Lett. 2024, 21, 7002105. [Google Scholar] [CrossRef]
- Liu, C.; Song, X.; Yu, D.; Qiu, L.; Xie, F.; Zi, Y.; Shi, Z. Infrared Small Target Detection Based on Prior Guided Dense Nested Network. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5002015. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, R.; Yang, Y.; Bai, H.; Zhang, J.; Guo, J. ISNet: Shape matters for infrared small target detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 877–886. [Google Scholar]
- Zhan, W.; Zhang, C.; Guo, S.; Guo, J.; Shi, M. EGISD-YOLO: Edge Guidance Network for Infrared Ship Target Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 10097–10107. [Google Scholar] [CrossRef]
- Wang, S. Automated non-PPE detection on construction sites using YOLOv10 and transformer architectures for surveillance and body worn cameras with benchmark datasets. Sci. Rep. 2025, 15, 27043. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhao, C.; Wang, Z.; Qin, Y.; Su, Z.; Li, X.; Zhou, F.; Zhao, G. Searching central difference convolutional networks for face anti-spoofing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5295–5305. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
Methods | NUDT-SIRST | NUAA-SIRST | ||||
---|---|---|---|---|---|---|
mIoU (±Std, ) | Pd () | Fa () | mIoU (±Std, ) | Pd () | Fa () | |
DNANet | 83.06 ± 0.5 | 96.93 | 8.89 | 71.73 ± 0.3 | 95.81 | 41.64 |
HoLoCoNet | 82.02 ± 0.4 | 98.09 | 9.99 | 70.44 ± 0.1 | 94.29 | 16.89 |
AGPCNet | 78.63 ± 0.4 | 97.77 | 9.03 | 73.24 ± 0.3 | 95.43 | 9.98 |
MSHNet | 76.39 ± 0.5 | 95.02 | 17.62 | 72.81 ± 0.4 | 95.95 | 23.38 |
ours | 86.78 ± 0.2 | 98.94 | 4.29 | 75.27 ± 0.2 | 96.58 | 13.19 |
Models | Param (M) | FLOPs (M) | Inference Time (ms) |
---|---|---|---|
DNANet | 4.70 | 14,282.23 | 132.22 |
HoLoCoNet | 0.7 | 7242.79 | 122.19 |
AGPCNet | 12.36 | 43,180.76 | 151.44 |
MSHNet | 4.07 | 6106.40 | 107.74 |
ours | 4.75 | 14,361.17 | 146.08 |
Methods | NUDT-SIRST | NUAA-SIRST | ||||
---|---|---|---|---|---|---|
mIoU (±Std, ) | Pd () | Fa () | mIoU (±Std, ) | Pd () | Fa () | |
DNANet | 83.06 ± 0.5 | 96.93 | 8.89 | 71.73 ± 0.3 | 95.81 | 41.64 |
DNAM-ResCSAM | 84.37 ± 0.3 | 97.03 | 7.46 | 73.15 ± 0.1 | 95.81 | 25.81 |
MLEEM-DNAM | 85.27 ± 0.3 | 98.09 | 5.97 | 74.76 ± 0.3 | 96.20 | 17.52 |
MLEDNet-noLHDC | 84.56 ± 0.4 | 97.14 | 7.85 | 73.26 ± 0.2 | 95.43 | 17.18 |
MLEDNet-noLVDC | 84.37 ± 0.3 | 97.35 | 8.62 | 73.51 ± 0.2 | 96.20 | 18.39 |
Ours | 86.78 ± 0.2 | 98.94 | 4.29 | 75.27 ± 0.2 | 96.58 | 13.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Kang, W.; Zhao, W.; Liu, X. MLEDNet: Multi-Directional Learnable Edge Information-Assisted Dense Nested Network for Infrared Small Target Detection. Electronics 2025, 14, 3547. https://doi.org/10.3390/electronics14173547
Li Y, Kang W, Zhao W, Liu X. MLEDNet: Multi-Directional Learnable Edge Information-Assisted Dense Nested Network for Infrared Small Target Detection. Electronics. 2025; 14(17):3547. https://doi.org/10.3390/electronics14173547
Chicago/Turabian StyleLi, Yong, Wenjie Kang, Wei Zhao, and Xuchong Liu. 2025. "MLEDNet: Multi-Directional Learnable Edge Information-Assisted Dense Nested Network for Infrared Small Target Detection" Electronics 14, no. 17: 3547. https://doi.org/10.3390/electronics14173547
APA StyleLi, Y., Kang, W., Zhao, W., & Liu, X. (2025). MLEDNet: Multi-Directional Learnable Edge Information-Assisted Dense Nested Network for Infrared Small Target Detection. Electronics, 14(17), 3547. https://doi.org/10.3390/electronics14173547