A Novel Integrated IMU-UWB Framework for Walking Trajectory Estimation in Non-Line-of-Sight Scenarios Involving Turning Gait
Abstract
1. Introduction
2. Materials and Methods
2.1. The Implementation of the Integrated Framework
2.2. Error State Kalman Filter (ESKF) Model
- is the state transition matrix.
- is the estimated covariance matrix at time k-1.
- is the control input matrix.
- is the process noise covariance matrix.
- is the error state estimation at time k.
- is the measurement residual.
- is the predicted error state at time k.
- is the earth rotation rate components,
- is the geodetic latitude at the measurement site,
- is the body-frame components of the gyroscope bias.
- is body-to-navigation frame transformation matrix for IMU.
- is the navigation-frame representation of IMU force (acceleration).
2.3. Turning Correction Module
2.4. Experimental Study
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
K | Kalman Gain Matrix |
F | State Transition Matrix |
B | Control Input Matrix |
H | Measurement Matrix |
Q | Process Noise Covariance Matrix |
δP | Position Error |
δV | Velocity Error |
δϕ | Misalignment Angles |
References
- Wei, L.; Wang, S.J. Motion tracking of daily living and physical activities in health care: Systematic review from designers’ perspective. JMIR Mhealth Uhealth 2024, 12, e46282. [Google Scholar] [CrossRef]
- Seifallahi, M.; Galvin, J.E.; Ghoraani, B. Curve walking reveals more gait impairments in older adults with mild cognitive impairment than straight walking: A Kinect camera-based study. J. Alzheimer’s Dis. Rep. 2024, 8, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.; Zhou, J.; Qiao, Y.; Guo, P. Block-based construction worker trajectory prediction method driven by site risk. Autom. Constr. 2024, 167, 105721. [Google Scholar] [CrossRef]
- Stirling, L.; Acosta-Sojo, Y.; Dennerlein, J.T. Defining a systems framework for characterizing physical work demands with wearable sensors. Ann. Work Expo. Health 2024, 68, 443–465. [Google Scholar] [CrossRef]
- Miola, L.; Muffato, V.; Sella, E.; Meneghetti, C.; Pazzaglia, F. GPS Use and Navigation Ability: A Systematic Review and Meta-Analysis. J. Environ. Psychol. 2024, 102417. [Google Scholar] [CrossRef]
- Hamadi, A.; Latoui, A. An accurate smartphone-based indoor pedestrian localization system using ORB-SLAM camera and PDR inertial sensors fusion approach. Measurement 2025, 240, 115642. [Google Scholar] [CrossRef]
- Al-Okby, M.F.; Junginger, S.; Roddelkopf, T.; Thurow, K. UWB-Based Real-Time Indoor Positioning Systems: A Comprehensive Review. Appl. Sci. 2024, 14, 11005. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, S.; Lv, J.; Lin, T.; Chen, P. UWTrack: Clustering Assisted Multi-person Passive Indoor Tracking via IR-UWB. IEEE Trans. Instrum. Meas. 2024, 73, 5038914. [Google Scholar] [CrossRef]
- Pardhu, T.; Kumar, V.; Kumar, P.; Deevi, N. Advancements in UWB Based Human Motion Detection Through Wall: A Comprehensive Analysis. IEEE Access 2024, 12, 89818–89835. [Google Scholar] [CrossRef]
- Qiao, J.; Yang, F.; Liu, J.; Huang, G.; Zhang, W.; Li, M. Advancements in Indoor Precision Positioning: A Comprehensive Survey of UWB and Wi-Fi RTT Positioning Technologies. Network 2024, 4, 545–566. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, D.; Gui, L.; Sheng, B.; Cai, H.; Xiao, F.; Han, J. UWTracking: Passive human tracking under LOS/NLOS scenarios using IR-UWB radar. IEEE Trans. Mob. Comput. 2024, 23, 11853–11870. [Google Scholar] [CrossRef]
- Xu, L.; Chen, Y.; Fan, B.; Yang, C.; Yang, W. Wearable Continuous Gait Phase Estimation During Walking, Running, Turning, Stairs, and Over Uneven Terrain. IEEE Trans. Med. Robot. Bionics 2024, 6, 1135–1146. [Google Scholar] [CrossRef]
- Ge, Y.; Li, W.; Farooq, M.; Qayyum, A.; Wang, J.; Chen, Z.; Cooper, J.; Imran, M.A.; Abbasi, Q.H. Logait: Lora sensing system of human gait recognition using dynamic time warping. IEEE Sens. J. 2023, 23, 21687–21697. [Google Scholar] [CrossRef]
- Ali, R.; Liu, R.; Nayyar, A.; Qureshi, B.; Cao, Z. Tightly coupling fusion of UWB ranging and IMU pedestrian dead reckoning for indoor localization. IEEE Access 2021, 9, 164206–164222. [Google Scholar] [CrossRef]
- Naheem, K.; Kim, M.S. A low-cost foot-placed UWB and IMU fusion-based indoor pedestrian tracking system for IoT applications. Sensors 2022, 22, 8160. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Wang, C.; He, C.; Zhuang, Y.; Xia, X.G. Kalman-filter-based integration of IMU and UWB for high-accuracy indoor positioning and navigation. IEEE Internet Things J. 2020, 7, 3133–3146. [Google Scholar] [CrossRef]
- Cardarelli, S.; Mengarelli, A.; Tigrini, A.; Strazza, A.; Di Nardo, F.; Fioretti, S.; Verdini, F. Single IMU displacement and orientation estimation of human center of mass: A magnetometer-free approach. IEEE Trans. Instrum. Meas. 2019, 69, 5629–5639. [Google Scholar] [CrossRef]
- Novak, D.; Goršič, M.; Podobnik, J.; Munih, M. Toward real-time automated detection of turns during gait using wearable inertial measurement units. Sensors 2014, 14, 18800–18822. [Google Scholar] [CrossRef]
- Fino, P.C.; Frames, C.W.; Lockhart, T.E. Classifying step and spin turns using wireless gyroscopes and implications for fall risk assessments. Sensors 2015, 15, 10676–10685. [Google Scholar] [CrossRef]
- Del Rosario, M.B.; Khamis, H.; Ngo, P.; Lovell, N.H.; Redmond, S.J. Computationally efficient adaptive error-state Kalman filter for attitude estimation. IEEE Sens. J. 2018, 18, 9332–9342. [Google Scholar] [CrossRef]
- Sagawa, K.; Ohkubo, K. 2D trajectory estimation during free walking using a tiptoe-mounted inertial sensor. J. Biomech. 2015, 48, 2054–2059. [Google Scholar] [CrossRef]
- Liu, W.; Song, D.; Wang, Z.; Fang, K. Comparative analysis between error-state and full-state error estimation for KF-based IMU/GNSS integration against IMU faults. Sensors 2019, 19, 4912. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, A.; Venepally, J.R.; Kim, D. Measurement noise covariance-adapting Kalman filters for varying sensor noise situations. Sensors 2021, 21, 8304. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Fu, Z. An adaptive Kalman filter loosely coupled indoor fusion positioning system based on inertial navigation system and ultra-wide band. Measurement 2025, 244, 116412. [Google Scholar] [CrossRef]
- Bi, J.; Wang, J.; Yu, B.; Yao, G.; Wang, Y.; Cao, H.; Xing, H. Precise Step Counting Algorithm for Pedestrians Using Ultra-Low-Cost Foot-Mounted Accelerometer. Eng. Appl. Artif. Intell. 2025, 150, 110619. [Google Scholar] [CrossRef]
No. | MAE (cm) | Err. Percentage (%) | Improvement (%) | |||||
---|---|---|---|---|---|---|---|---|
UWB | UWB-IMU | Integrated | UWB | UWB-IMU | Integrated | vs. UWB-IMU | vs. UWB | |
1 | 27.5 | 25.1 | 9.2 | 21.2% | 19.3% | 7.1% | 12.2% | 14.1% |
2 | 22.2 | 16.5 | 7.1 | 17.1% | 12.7% | 5.5% | 7.2% | 11.6% |
3 | 26.4 | 21.1 | 8.0 | 20.4% | 16.2% | 6.1% | 10.1% | 14.3% |
4 | 28.5 | 18.7 | 8.6 | 22.0% | 14.4% | 6.6% | 7.8% | 15.4% |
5 | 25.9 | 21.2 | 8.3 | 20.0% | 16.4% | 6.4% | 10.0% | 13.6% |
6 | 14.4 | 9.0 | 4.7 | 11.1% | 7.0% | 3.6% | 3.3% | 7.5% |
7 | 26.6 | 21.3 | 8.6 | 20.5% | 16.5% | 6.6% | 9.8% | 13.9% |
8 | 19.7 | 16.5 | 6.1 | 15.2% | 12.7% | 4.7% | 8.0% | 10.5% |
9 | 26.1 | 22.3 | 8.3 | 20.2% | 17.2% | 6.4% | 10.8% | 13.7% |
10 | 25.7 | 21.8 | 8.2 | 19.8% | 16.8% | 6.3% | 10.5% | 13.5% |
11 | 15.6 | 11.4 | 4.9 | 12.1% | 8.8% | 3.8% | 5.0% | 8.3% |
12 | 26.9 | 25.4 | 8.7 | 20.7% | 19.6% | 6.7% | 12.8% | 14.0% |
13 | 23.4 | 18.5 | 7.4 | 18.1% | 14.3% | 5.7% | 8.5% | 12.3% |
14 | 18.0 | 11.7 | 5.3 | 13.9% | 9.0% | 4.1% | 4.9% | 9.8% |
15 | 22.4 | 9.9 | 7.2 | 17.3% | 7.7% | 5.6% | 2.1% | 11.7% |
16 | 14.4 | 7.8 | 3.9 | 11.1% | 6.0% | 3.0% | 3.1% | 8.2% |
17 | 15.8 | 11.4 | 5.1 | 12.2% | 8.8% | 3.9% | 4.9% | 8.3% |
18 | 19.4 | 15.1 | 6.3 | 15.0% | 11.6% | 4.8% | 6.8% | 10.2% |
Mean | 22.2 | 16.9 | 7.0 | 17.1% | 13.1% | 5.4% | 7.7% | 11.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, H.; Peng, T.; Zhang, W.; Fan, Q.; Zhong, Z.; Li, H.; Hu, X. A Novel Integrated IMU-UWB Framework for Walking Trajectory Estimation in Non-Line-of-Sight Scenarios Involving Turning Gait. Electronics 2025, 14, 3546. https://doi.org/10.3390/electronics14173546
Jia H, Peng T, Zhang W, Fan Q, Zhong Z, Li H, Hu X. A Novel Integrated IMU-UWB Framework for Walking Trajectory Estimation in Non-Line-of-Sight Scenarios Involving Turning Gait. Electronics. 2025; 14(17):3546. https://doi.org/10.3390/electronics14173546
Chicago/Turabian StyleJia, Haonan, Tongrui Peng, Wenchao Zhang, Qifei Fan, Zhikang Zhong, Hongsheng Li, and Xinyao Hu. 2025. "A Novel Integrated IMU-UWB Framework for Walking Trajectory Estimation in Non-Line-of-Sight Scenarios Involving Turning Gait" Electronics 14, no. 17: 3546. https://doi.org/10.3390/electronics14173546
APA StyleJia, H., Peng, T., Zhang, W., Fan, Q., Zhong, Z., Li, H., & Hu, X. (2025). A Novel Integrated IMU-UWB Framework for Walking Trajectory Estimation in Non-Line-of-Sight Scenarios Involving Turning Gait. Electronics, 14(17), 3546. https://doi.org/10.3390/electronics14173546