Article Versions Notes
Action | Date | Notes | Link |
---|---|---|---|
article pdf uploaded. | 30 June 2025 16:47 CEST | Version of Record | https://www.mdpi.com/2079-9292/14/13/2654/pdf |
You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.
All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess.
Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.
Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.
Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.
Original Submission Date Received: .
Action | Date | Notes | Link |
---|---|---|---|
article pdf uploaded. | 30 June 2025 16:47 CEST | Version of Record | https://www.mdpi.com/2079-9292/14/13/2654/pdf |
Rahman, M.; Morshed, B.I. Resource-Constrained On-Chip AI Classifier for Beat-by-Beat Real-Time Arrhythmia Detection with an ECG Wearable System. Electronics 2025, 14, 2654. https://doi.org/10.3390/electronics14132654
Rahman M, Morshed BI. Resource-Constrained On-Chip AI Classifier for Beat-by-Beat Real-Time Arrhythmia Detection with an ECG Wearable System. Electronics. 2025; 14(13):2654. https://doi.org/10.3390/electronics14132654
Chicago/Turabian StyleRahman, Mahfuzur, and Bashir I. Morshed. 2025. "Resource-Constrained On-Chip AI Classifier for Beat-by-Beat Real-Time Arrhythmia Detection with an ECG Wearable System" Electronics 14, no. 13: 2654. https://doi.org/10.3390/electronics14132654
APA StyleRahman, M., & Morshed, B. I. (2025). Resource-Constrained On-Chip AI Classifier for Beat-by-Beat Real-Time Arrhythmia Detection with an ECG Wearable System. Electronics, 14(13), 2654. https://doi.org/10.3390/electronics14132654