Denoising Degraded PCOS Ultrasound Images Using an Enhanced Denoising Diffusion Probabilistic Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Ultrasound Noise Degradation Modeling
2.2. DDPM Model
2.3. Improved DDPM Denoising Model
2.4. Noise Addition Strategy and Loss Function
3. Results
Dataset and Experimental Environment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Azziz, R.; Carmina, E.; Chen, Z.; Dunaif, A.; Laven, J.S.E.; Legro, R.S.; Lizneva, D.; Natterson-Horowtiz, B.; Teede, H.J. Polycystic ovary syndrome. Nat. Rev. Dis. Primers 2016, 2, 16057. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, M.O.; Dumesic, D.A.; Chazenbalk, G.; Azziz, R. Polycystic ovary syndrome: Etiology, pathogenesis and diagnosis. Nat. Rev. Endocrinol. 2011, 7, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Noble, J.A.; Boukerroui, D. Ultrasound image segmentation: A survey. IEEE Trans. Med. Imaging 2006, 25, 987–1010. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), Bombay, India, 7 January 1998; pp. 839–846. [Google Scholar]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005. [Google Scholar]
- Deledalle, C.A.; Duval, V.; Salmon, J. Non-local methods with shape-adaptive patches. J. Math. Imaging Vis. 2012, 43, 103–120. [Google Scholar] [CrossRef]
- Coupe, P.; Hellier, P.; Kervrann, C.; Barillot, C. Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans. Image Process. 2009, 18, 2221–2229. [Google Scholar] [CrossRef] [PubMed]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Jifara, W.; Jiang, F.; Rho, S.; Cheng, M.; Liu, S. Medical image denoising using convolutional neural network: A residual learning approach. J. Supercomput. 2019, 75, 704–718. [Google Scholar] [CrossRef]
- Yang, Q.; Yan, P.; Zhang, Y.; Yu, H.; Shi, Y.; Mou, X.; Kalra, M.K.; Zhang, Y.; Sun, L.; Wang, G. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 2018, 37, 1348–1357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, J. Ultrasound image denoising using generative adversarial networks with residual dense connectivity and weighted joint loss. PeerJ Comput. Sci. 2022, 8, e873. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 2020, 33, 6840–6851. [Google Scholar]
- Dhariwal, P.; Nichol, A. Diffusion models beat GANs on image synthesis. Adv. Neural Inf. Process. Syst. 2021, 34, 8780–8794. [Google Scholar]
- Peng, J.; Chen, G.; Saruta, K.; Terata, Y. 2D brain MRI image synthesis based on lightweight denoising diffusion probabilistic model. Med. Imaging Process Technol. 2023, 7, 2518. [Google Scholar] [CrossRef]
- Krishna, A.; Wang, G.; Mueller, K. Multi-Conditioned Denoising Diffusion Probabilistic Model (mDDPM) for Medical Image Synthesis. arXiv 2024, arXiv:2409.04670. [Google Scholar]
- Jiang, Y.; Lemaréchal, Y.; Bafaro, J.; Abi-Rjeile, J.; Joubert, P.; Després, P.; Manem, V. Lung-ddpm: Semantic layout-guided diffusion models for thoracic ct image synthesis. arXiv 2025, arXiv:2502.15204. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, C.; Yan, C.; Li, X.; Li, H.; Zhang, T.; Song, H.; Schaffert, R.; Yu, W.; Fan, Y.; et al. Ultra-low dose CT image denoising based on conditional denoising diffusion probabilistic model. In Proceedings of the 2022 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Suzhou, China, 14–16 October 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Michailovich, O.V.; Tannenbaum, A. Despeckling of medical ultrasound images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2006, 53, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Sohl-Dickstein, J.; Weiss, E.; Maheswaranathan, N.; Ganguli, S. Deep unsupervised learning using nonequilibrium thermodynamics. In Proceedings of the International Conference on Machine Learning PMLR, Lille, France, 6–11 July 2015; pp. 2256–2265. [Google Scholar]
- Saharia, C.; Chan, W.; Chang, H.; Lee, C.; Ho, J.; Salimans, T.; Fleet, D.; Norouzi, M. Palette: Image-to-image diffusion models. In Proceedings of the ACM SIGGRAPH 2022 Conference Proceedings, Vancouver, BC, Canada, 7–11 August 2022; pp. 1–10. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of GANs for improved quality, stability, and variation. In Proceedings of the 6th International Conference on Learning Representations (ICLR 2018), Vancouver, BC, Canada, 30 April–3 May 2018; pp. 1–26. [Google Scholar]
- Choudhari, A. PCOS Detection Using Ultrasound Images. Available online: https://www.kaggle.com/datasets/anaghachoudhari/pcos-detection-using-ultrasound-images (accessed on 20 May 2025).
- Wisesty, U.N.; Thufailah, I.F.; Dewi, R.M.; Adiwijaya, J.; Jondri. Study of Segmentation Technique and Stereology to Detect PCO Follicles on USG Images. J. Comput. Sci. 2018, 14, 351–359. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–618. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Cherkassky, V. Image denoising using wavelet thresholding and model selection. In Proceedings of the 2000 International Conference on Image Processing (Cat. No. 00CH37101), 10–13 September 2000; IEEE: Vancouver, BC, Canada, 2000; Volume 3, pp. 262–265. [Google Scholar]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 2018, 27, 4608–4622. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Fan, F.; Wu, Z.; Liu, R.; Wang, F.; Yu, H. CTformer: Convolution-free Token2Token dilated vision transformer for low-dose CT denoising. Phys. Med. Biol. 2023, 68, 065012. [Google Scholar] [CrossRef] [PubMed]
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.-H. Restormer: Efficient transformer for high-resolution image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5728–5739. [Google Scholar]
Methods | Timestep | PSNR | SSIM | FID | Inference Time | Significance |
---|---|---|---|---|---|---|
Original image | / | 1 | 0 | - | - | |
Bilateral filtering | / | 18.56 | 0.4068 | 296.1803 | - | - |
Wavelet | / | 23.29 | 0.6550 | 274.0399 | - | - |
DnCNN | / | 25.31 | 0.7289 | 177.7236 | 1 s | Baseline |
FFDNet | / | 26.47 | 0.7935 | 122.2012 | 1–2 s | * |
DDPM | 1000 | 28.05 | 0.8254 | 90.9101 | 31 s | ** |
Ours | 1000 | 29.62 | 0.8612 | 55.3037 | 18 s | ** |
Methods | PSNR | SSIM | FID | LPIPS | Parameters | ||||
---|---|---|---|---|---|---|---|---|---|
/ | Addnoise | Speckle noise | Addnoise | Speckle noise | Addnoise | Speckle noise | Addnoise | Speckle noise | - |
CTformer | 26.71 | 23.15 | 0.692 | 0.598 | 209.13 | 254.28 | 0.347 | 0.413 | 1.92 M |
Restormer | 30.45 | 24.17 | 0.785 | 0.719 | 131.63 | 186.44 | 0.168 | 0.232 | 26.3 M |
DDPM | 27.78 | 22.39 | 0.728 | 0.646 | 209.51 | 234.98 | 0.235 | 0.307 | 53.2 M |
Ours | 28.74 | 23.82 | 0.716 | 0.668 | 171.80 | 203.16 | 0.246 | 0.271 | 37.9 M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Guo, Z.; Chen, X.; Zhou, M. Denoising Degraded PCOS Ultrasound Images Using an Enhanced Denoising Diffusion Probabilistic Model. Electronics 2025, 14, 4061. https://doi.org/10.3390/electronics14204061
Peng J, Guo Z, Chen X, Zhou M. Denoising Degraded PCOS Ultrasound Images Using an Enhanced Denoising Diffusion Probabilistic Model. Electronics. 2025; 14(20):4061. https://doi.org/10.3390/electronics14204061
Chicago/Turabian StylePeng, Jincheng, Zhenyu Guo, Xing Chen, and Ming Zhou. 2025. "Denoising Degraded PCOS Ultrasound Images Using an Enhanced Denoising Diffusion Probabilistic Model" Electronics 14, no. 20: 4061. https://doi.org/10.3390/electronics14204061
APA StylePeng, J., Guo, Z., Chen, X., & Zhou, M. (2025). Denoising Degraded PCOS Ultrasound Images Using an Enhanced Denoising Diffusion Probabilistic Model. Electronics, 14(20), 4061. https://doi.org/10.3390/electronics14204061