Resource-Constrained On-Chip AI Classifier for Beat-by-Beat Real-Time Arrhythmia Detection with an ECG Wearable System
Abstract
1. Introduction
2. Related Work
3. Materials and Methods
3.1. Database
3.2. Firmware Processing
3.2.1. Preprocessing
3.2.2. R-Peak Detection
3.2.3. Feature Extraction
3.2.4. DNN Architecture
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marrazzo, G.; Palermi, S.; Pastore, F.; Ragni, M.; Mauriello, A.; Zambrano, A.; Quaranta, G.; Manto, A.; D’Andrea, A. Enhancing st-elevation myocardial infarction diagnosis and management: The integral role of echocardiography in patients rushed to the cardiac catheterization laboratory. J. Clin. Med. 2024, 13, 1425. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, S.; Yuan, X.; Zhang, P. Interpretable deep learning for automatic diagnosis of 12-lead electrocardiogram. Iscience 2021, 24, 102373. [Google Scholar] [CrossRef]
- World Health Organization. Cardiovascular diseases (CVDs). In WHO Fact Sheets; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- American Heart Association. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar]
- Heidenreich, P.A.; Albert, N.M.; Allen, L.A.; Bluemke, D.A.; Butler, J.; Fonarow, G.C.; Ikonomidis, J.S.; Khavjou, O.; Konstam, M.A.; Maddox, T.M.; et al. Forecasting the impact of heart failure in the united states. Circ. Heart Fail. 2013, 6, 606–619. [Google Scholar] [CrossRef]
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart disease and stroke statistics—2021 update. Circulation 2021, 143, 8. [Google Scholar] [CrossRef]
- Echouffo-Tcheugui, J.B.; Bishu, K.G.; Fonarow, G.C.; Egede, L.E. Trends in health care expenditure among us adults with heart failure: The medical expenditure panel survey 2002–2011. Am. Heart J. 2017, 186, 63–72. [Google Scholar] [CrossRef]
- Dias, D.; Cunha, J.P.S. Wearable health devices—vital sign monitoring, systems and technologies. Sensors 2018, 18, 2414. [Google Scholar] [CrossRef]
- January, C.T.; Wann, L.S.; Calkins, H.; Chen, L.Y.; Cigarroa, J.E.; Cleveland, J.C.; Ellinor, P.T.; Ezekowitz, M.D.; Field, M.E.; Furie, K.L.; et al. 2019 aha/acc/hrs focused update of the 2014 aha/acc/hrs guideline for the management of patients with atrial fibrillation. J. Am. Coll. Cardiol. 2019, 74, 104–132. [Google Scholar] [CrossRef]
- Bakker, A.; Mathijssen, H.; Huitema, M.; Kapteijns, L.; Grutters, J.; Veltkamp, M.; Keijsers, R.; Akdim, F.; van Es, H.; Peper, J.; et al. Holter monitoring and cardiac biomarkers in screening for cardiac sarcoidosis. Lung 2025, 203, 10. [Google Scholar] [CrossRef]
- Vuckovic-Filipovic, J.; Iric Cupic, V.; Davidovic, G.; Ignjatovic, V.; Ignjatovic, V.; Stankovic, I.; Simic, I.; Miloradovic, V.; Djordjevic, N. Implantable loop recorder in diagnostics of cardiac arrhythmias: The importance of drug treatment in predicting pacemaker requirement. medRxiv 2025. [Google Scholar] [CrossRef]
- Aljuaid, M.; Marashly, Q.; Al-Danaf, J.; Tawhari, I.; Barakat, M.; Barakat, R.; Zobell, B.; Cho, Y.; Chelu, M.; Marrouche, N. Smartphone ecg monitoring system helps lower emergency room and clinic visits in post–atrial fibrillation ablation patients. Clin. Med. Insights Cardiol. 2020, 14, 117954682090150. [Google Scholar] [CrossRef]
- Rothman, S.; Laughlin, J.; Seltzer, J.; Walia, J.; Baman, R.; Siouffi, S.; Sangrigoli, R.; Kowey, P. the diagnosis of cardiac arrhythmias: A prospective multi-center randomized study comparing mobile cardiac outpatient telemetry versus standard loop event monitoring. J. Cardiovasc. Electrophysiol. 2007, 18, 241–247. [Google Scholar] [CrossRef]
- Andersen, M.Ø.; Diederichsen, S.Z.; Svendsen, J.H.; Carlsen, J. Assessment of cardiac arrhythmias using long-term continuous monitoring in patients with pulmonary hypertension. Int. J. Cardiol. 2021, 334, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.; Yu, S.; Wu, Y.; Liu, X.; He, J.; Ma, M.; Zeng, X.; Jiang, N. A noninvasive hyperkalemia monitoring system for dialysis patients based on a 1D-CNN model and single-lead ECG from wearable devices. Sci. Rep. 2025, 15, 2950. [Google Scholar] [CrossRef]
- Poongodi, J.; Kavitha, K.; Sathish, S.; Lakshmana Kumar, R. Hybrid AI-Driven Bio-Inspired Wearable Sensors With Aquasense AI Technology for Multimodal Health Monitoring and Rehabilitation in Dynamic Environments. Trans. Emerg. Telecommun. Technol. 2025, 36, e70081. [Google Scholar] [CrossRef]
- Vu, T.; Petty, T.; Yakut, K.; Usman, M.; Xue, W.; Haas, F.M.; Hirsh, R.A.; Zhao, X. Real-time arrhythmia detection using convolutional neural networks. Front. Big Data 2023, 6, 1270756. [Google Scholar] [CrossRef]
- Shumba, A.T.; Montanaro, T.; Sergi, I.; Bramanti, A.; Ciccarelli, M.; Rispoli, A.; Carrizzo, A.; De Vittorio, M.; Patrono, L. Wearable Technologies and AI at the Far Edge for Chronic Heart Failure Prevention and Management: A Systematic Review and Prospects. Sensors 2023, 23, 6896. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Xie, Y. A Novel Wearable Electrocardiogram Classification System Using Convolutional Neural Networks and Active Learning. IEEE Access 2019, 7, 7989–8001. [Google Scholar] [CrossRef]
- Eleyan, A.; AlBoghbaish, E.; AlShatti, A.; AlSultan, A.; AlDarbi, D. RHYTHMI: A Deep Learning-Based Mobile ECG Device for Heart Disease Prediction. Appl. Syst. Innov. 2024, 7, 77. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Xu, L.; de Albuquerque, V.H.C.; Wu, W. Implementing the Confidence Constraint Cloud-Edge Collaborative Computing Strategy for Ultra-Efficient Arrhythmia Monitoring. Appl. Soft Comput. 2024, 154, 111402. [Google Scholar] [CrossRef]
- Kim, E.; Kim, J.; Park, J.; Ko, H.; Kyung, Y. TinyML-Based Classification in an ECG Monitoring Embedded System. Comput. Mater. Contin. 2023, 75, 1751–1764. [Google Scholar] [CrossRef]
- Sakib, S.; Fouda, M.M.; Fadlullah, Z.M.; Nasser, N.; Alasmary, W. A proof-of-concept of ultra-edge smart iot sensor: A continuous and lightweight arrhythmia monitoring approach. IEEE Access 2021, 9, 26093–26106. [Google Scholar] [CrossRef]
- Ianculescu, M.; Constantin, V.Ș.; Gușatu, A.M.; Petrache, M.C.; Mihăescu, A.G.; Bica, O.; Alexandru, A. Enhancing Connected Health Ecosystems Through IoT-Enabled Monitoring Technologies: A Case Study of the Monit4Healthy System. Sensors 2025, 25, 2292. [Google Scholar] [CrossRef] [PubMed]
- Prajitha, C.; Sridhar, K.P.; Baskar, S. ECG diagnosis for arrhythmia detection with a cloud-based service and a wearable sensor network in a smart city environment. Front. Sustain. Cities 2022, 4, 1073486. [Google Scholar] [CrossRef]
- Choi, H.; Park, J.; Lee, J.; Sim, D. Review on spiking neural network-based ECG classification methods for low-power environments. Biomed. Eng. Lett. 2024, 14, 917–941. [Google Scholar] [CrossRef] [PubMed]
- Mone, V.; Shakhlo, F. Health data on the go: Navigating privacy concerns with wearable technologies. Leg. Inf. Manag. 2023, 23, 179–188. [Google Scholar] [CrossRef]
- Suwannaphong, T.; Jovan, F.; Craddock, I.; McConville, R. Optimising tinyml with quantization and distillation of transformer and mamba models for indoor localisation on edge devices. Sci. Rep. 2025, 15, 10081. [Google Scholar] [CrossRef]
- Hizem, M.; Bousbia, L.; Ben Dhiab, Y.; Aoueileyine, M.O.; Bouallegue, R. Reliable ecg anomaly detection on edge devices for internet of medical things applications. Sensors 2025, 25, 2496. [Google Scholar] [CrossRef]
- Saha, S.S.; Sandha, S.S.; Srivastava, M. Machine learning for microcontroller-class hardware: A review. IEEE Sens. J. 2022, 22, 21362–21390. [Google Scholar] [CrossRef]
- Sivapalan, G.; Nundy, K.; Dev, S.; Cardiff, B.; John, D. Annet: A lightweight neural network for ecg anomaly detection in iot edge sensors. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 24–35. [Google Scholar] [CrossRef]
- Raje, E. Realtime anomaly detection in healthcare iot: A machine learning-driven security framework. J. Electr. Syst. 2024, 19, 192–202. [Google Scholar] [CrossRef]
- Krasteva, V.; Stoyanov, T.; Jekova, I. Implementing deep neural networks on arm-based microcontrollers: Application for ventricular fibrillation detection. Appl. Sci. 2025, 15, 1965. [Google Scholar] [CrossRef]
- Faraone, A.; Sigurthorsdottir, H.; Delgado-Gonzalo, R. Atrial fibrillation detection on low-power wearables using knowledge distillation. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual, 1–5 November 2021. [Google Scholar] [CrossRef]
- Banerjee, R.; Ghose, A. A light-weight deep residual network for classification of abnormal heart rhythms on tiny devices. In Communications in Computer and Information Science; Springer Nature: Cham, Switzerland, 2023; pp. 317–331. [Google Scholar] [CrossRef]
- Farag, M. A self-contained stft cnn for ecg classification and arrhythmia detection at the edge. IEEE Access 2022, 10, 94469–94486. [Google Scholar] [CrossRef]
- Rizqyawan, M.I.; Munandar, A.; Amri, M.F.; Korio Utoro, R.; Pratondo, A. Quantized Convolutional Neural Network toward Real-time Arrhythmia Detection in Edge Device. In Proceedings of the 2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Tangerang, Indonesia, 18–20 November 2020; pp. 234–239. [Google Scholar] [CrossRef]
- Gonzalez-Carabarin, L.; Schmid, A.; Van Sloun, R.J. Hardware-oriented pruning and quantization of Deep Learning models to detect life-threatening arrhythmias. In Proceedings of the 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS), Berlin, Germany, 7–9 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Risso, M.; Burrello, A.; Conti, F.; Lamberti, L.; Chen, Y.; Benini, L.; Macii, E.; Poncino, M.; Pagliari, D. Lightweight neural architecture search for temporal convolutional networks at the edge. IEEE Trans. Comput. 2022, 72, 744–758. [Google Scholar] [CrossRef]
- Krishna, A.; Rohit Nudurupati, S.; Chandana, D.G.; Dwivedi, P.; van Schaik, A.; Mehendale, M.; Thakur, C.S. RAMAN: A Reconfigurable and Sparse tinyML Accelerator for Inference on Edge. IEEE Internet Things J. 2024, 11, 24831–24845. [Google Scholar] [CrossRef]
- Dere, M.D.; Jo, J.H.; Lee, B. Event-Driven Edge Deep Learning Decoder for Real-Time Gesture Classification and Neuro-Inspired Rehabilitation Device Control. IEEE Trans. Instrum. Meas. 2023, 72, 4011612. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, BME-32, 230–236. [Google Scholar] [CrossRef]
- Félix, R.A.; Ochoa-Brust, A.; Mata-López, W.; Martínez-Peláez, R.; Mena, L.J.; Valdez-Velázquez, L.L. Fast Parabolic Fitting: An R-Peak Detection Algorithm for Wearable ECG Devices. Sensors 2023, 23, 8796. [Google Scholar] [CrossRef]
- Rizwan, A.; Priyanga, P.; Abualsauod, E.; Nasrullah, S.; Serbaya, S.; Halifa, A. A machine learning approach for the detection of qrs complexes in electrocardiogram (ecg) using discrete wavelet transform (dwt) algorithm. Comput. Intell. Neurosci. 2022, 2022, 1–8. [Google Scholar] [CrossRef]
- Nguyen, T.; Qin, X.; Dinh, A.; Bui, F. Low resource complexity R-peak detection based on triangle template matching and moving average filter. Sensors 2019, 19, 3997. [Google Scholar] [CrossRef]
- Bae, T.W.; Kwon, K.K. Efficient real-time R and QRS detection method using a pair of derivative filters and max filter for portable ECG device. Appl. Sci. 2019, 9, 4128. [Google Scholar] [CrossRef]
- Neri, L.; Oberdier, M.T.; Augello, A.; Suzuki, M.; Tumarkin, E.; Jaipalli, S.; Geminiani, G.A.; Halperin, H.R.; Borghi, C. Algorithm for mobile platform-based real-time qrs detection. Sensors 2023, 23, 1625. [Google Scholar] [CrossRef]
- Moody, G.B.; Mark, R.G. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 2001, 20, 45–50. [Google Scholar] [CrossRef]
- Habibi, Z.; Karimizadeh, K.; Nosratpour, A.; Alipourfard, I. Enhanced QRS detection and ECG compression using adaptive thresholding: A real-time approach for improved monitoring and diagnosis. Comput. Electr. Eng. 2024, 119, 109528. [Google Scholar] [CrossRef]
- Zhao, K.; Li, Y.; Wang, G.; Pu, Y.; Lian, Y. A robust QRS detection and accurate R-peak identification algorithm for wearable ECG sensors. Sci. China Inf. Sci. 2021, 64, 182401. [Google Scholar] [CrossRef]
- Reklewski, W.; Miśkowicz, M.; Augustyniak, P. QRS Detector Performance Evaluation Aware of Temporal Accuracy and Presence of Noise. Sensors 2024, 24, 1698. [Google Scholar] [CrossRef] [PubMed]
- Sabor, N.; Gendy, G.; Mohammed, H.; Wang, G.; Lian, Y. Robust arrhythmia classification based on QRS detection and a compact 1D-CNN for wearable ECG devices. IEEE J. Biomed. Health Inform. 2022, 26, 5918–5929. [Google Scholar] [CrossRef] [PubMed]
- Alqudah, A.M.; Albadarneh, A.; Abu-Qasmieh, I.; Alquran, H. Developing of robust and high accurate ECG beat classification by combining Gaussian mixtures and wavelets features. Australas. Phys. Eng. Sci. Med. 2019, 42, 149–157. [Google Scholar] [CrossRef]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M.; Gertych, A.; San Tan, R. A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 2017, 89, 389–396. [Google Scholar] [CrossRef]
- Huang, J.S.; Chen, B.Q.; Zeng, N.Y.; Cao, X.C.; Li, Y. Accurate classification of ECG arrhythmia using MOWPT enhanced fast compression deep learning networks. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 5703–5720. [Google Scholar] [CrossRef]
- Ribeiro, H.D.M.; Arnold, A.; Howard, J.P.; Shun-Shin, M.J.; Zhang, Y.; Francis, D.P.; Lim, P.B.; Whinnett, Z.; Zolgharni, M. ECG-based real-time arrhythmia monitoring using quantized deep neural networks: A feasibility study. Comput. Biol. Med. 2022, 143, 105249. [Google Scholar]
- Kim, N.; Lee, S.; Kim, S.; Park, S.M. Automated Arrhythmia Classification System: Proof-of-Concept with Lightweight Model on an Ultra-Edge Device. IEEE Access 2024, 12, 150546–150563. [Google Scholar] [CrossRef]
- Amirshahi, A.; Hashemi, M. ECG classification algorithm based on STDP and R-STDP neural networks for real-time monitoring on ultra low-power personal wearable devices. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1483–1493. [Google Scholar] [CrossRef]
- Busia, P.; Scrugli, M.A.; Jung, V.J.B.; Benini, L.; Meloni, P. A tiny transformer for low-power arrhythmia classification on microcontrollers. IEEE Trans. Biomed. Circuits Syst. 2024, 19, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Falaschetti, L.; Alessandrini, M.; Biagetti, G.; Crippa, P.; Turchetti, C. ECG-based arrhythmia classification using recurrent neural networks in embedded systems. Procedia Comput. Sci. 2022, 207, 3479–3487. [Google Scholar] [CrossRef]
- Jeong, Y.; Lee, J.; Shin, M. Enhancing Inter-Patient Performance for Arrhythmia Classification with Adversarial Learning Using Beat-Score Maps. Appl. Sci. 2024, 14, 7227. [Google Scholar] [CrossRef]
- Huang, B.; Abtahi, A.; Aminifar, A. Energy-Aware Integrated Neural Architecture Search and Partitioning for Distributed Internet of Things (IoT). IEEE Trans. Circuits Syst. Artif. Intell. 2024, 1, 257–271. [Google Scholar] [CrossRef]
- Rahman, M.; Hewitt, R.; Morshed, B.I. Design and Packaging of a Custom Single-lead Electrocardiogram (ECG) Sensor Embedded with Wireless Transmission. In Proceedings of the 2023 IEEE 16th Dallas Circuits and Systems Conference (DCAS), Denton, TX, USA, 14–16 April 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Utsha, U.T.; Morshed, B.I. A smartphone app for real-time heart rate computation from streaming ECG/EKG data. In Proceedings of the 2023 IEEE International Conference on Electro Information Technology (eIT), Romeoville, IL, USA, 18–20 May 2023; pp. 1–6. [Google Scholar]
AAMI Class | Code | MIT-BIH Beat Description | Symbol |
---|---|---|---|
Non-ectopic beat | N | Normal Left bundle branch block Right bundle branch block Atrial escape Nodal premature | L R e j |
Supra-ventricular ectopic beat | SV | Atrial premature Aberrated atrial premature Nodal premature Supraventricular premature | A a J S |
Ventricular ectopic beat | V | Premature ventricular Ventricular escape | V E |
Fusion beat | F | Fusion of ventricular and normal beat | F |
Unknown beat | Q | Paced Unclassifiable Paced and normal beat fusion | / Q f |
Time Series Features | Mean | RMS | SD | Kurtosis | Skewness |
---|---|---|---|---|---|
Spectral Features | PS 2–4 Hz | PS 4–6 Hz | PS 6–8 Hz | Spectral kurtosis | Spectral skewness |
Morphological Features | R peak | T peak | P peak | RR interval | QRS duration |
PR interval | ST interval | QT interval | Minimum | Maximum |
ANN (D1, D2, D3, D4, D5) | CNN (CL1, CL2, CL3, D1, D2) | LSTM (D1, LS1, LS2, D2, D3) | |||
---|---|---|---|---|---|
Model | Units | Model | Filters/Units | Model | Units |
A1 | 32, 32, 32, 32, 32 | C1 | 32, 32, 32, 32, 32 | L1 | 32, 32, 32, 32, 32 |
A2 | 32, 64, 64, 64, 64 | C2 | 32, 64, 32, 32, 32 | L2 | 64, 32, 32, 64, 64 |
A3 | 32, 32, 64, 64, 128 | C3 | 64, 32, 32, 32, 32 | L3 | 64, 128, 128, 64, 64 |
A4 | 32, 64, 64, 64, 128 | C4 | 64, 64, 32, 32, 32 | L4 | 64, 64, 64, 64, 64 |
A5 | 32, 64, 64, 128, 128 | C5 | 128, 64, 32, 48, 24 | L5 | 128, 32, 32, 128, 128 |
A6 | 64, 64, 64, 64, 64 | C6 | 128, 64, 32, 32, 32 | L6 | 128, 64, 64, 128, 128 |
A7 | 64, 64, 64, 128, 128 | C7 | 128, 64, 32, 64, 32 | L7 | 64, 128, 128, 64, 32 |
A8 | 64, 64, 128, 128, 128 | C8 | 128, 64, 32, 128, 128 | L8 | 128, 128, 128, 64, 32 |
A9 | 64, 128, 128, 128, 128 | C9 | 128, 96, 64, 128, 128 | L9 | 128, 128, 128, 64, 64 |
A10 | 128, 128, 128, 128, 128 | C10 | 128, 128, 128, 128, 128 | L10 | 128, 128, 128, 128, 128 |
Record | Actual | TP | FP | FN | Sn, % | Pr, % | F1, % | RPERMS (ms) | SDRR (ms) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 201 | 2273 | 1963 | 2273 | 1959 | 3 | 3 | 0 | 4 | 100.00 | 99.80 | 99.87 | 99.85 | 99.93 | 99.82 | 1.51 | 9.21 | 1.86 | 15.19 |
101 | 202 | 1862 | 2136 | 1862 | 2103 | 7 | 8 | 3 | 33 | 99.84 | 98.46 | 99.63 | 99.62 | 99.73 | 99.03 | 1.13 | 1.80 | 5.00 | 6.91 |
102 | 203 | 2187 | 2980 | 2187 | 2945 | 3 | 30 | 0 | 35 | 100.00 | 98.83 | 99.86 | 98.99 | 99.93 | 98.91 | 4.62 | 12.40 | 14.37 | 18.34 |
103 | 205 | 2080 | 2656 | 2080 | 2651 | 7 | 7 | 4 | 5 | 99.81 | 99.81 | 99.66 | 99.74 | 99.74 | 99.77 | 1.27 | 1.76 | 2.86 | 5.39 |
104 | 207 | 2213 | 1860 | 2213 | 1853 | 32 | 5 | 16 | 7 | 99.28 | 99.62 | 98.57 | 99.73 | 98.93 | 99.68 | 9.16 | 5.52 | 18.32 | 14.19 |
105 | 208 | 2542 | 2955 | 2542 | 2930 | 37 | 7 | 26 | 25 | 98.99 | 99.15 | 98.57 | 99.76 | 98.78 | 99.46 | 4.02 | 39.82 | 16.30 | 35.82 |
106 | 209 | 1971 | 3005 | 1971 | 3004 | 18 | 6 | 56 | 1 | 97.24 | 99.97 | 99.10 | 99.80 | 98.16 | 99.88 | 10.53 | 0.81 | 15.82 | 3.24 |
107 | 210 | 2132 | 2650 | 2132 | 2641 | 2 | 8 | 5 | 9 | 99.77 | 99.66 | 99.91 | 99.70 | 99.84 | 99.68 | 2.64 | 3.34 | 7.82 | 9.59 |
108 | 212 | 1763 | 2748 | 1763 | 2946 | 79 | 0 | 0 | 2 | 100.00 | 99.93 | 95.71 | 100.00 | 97.81 | 99.97 | 34.99 | 1.55 | 56.35 | 4.42 |
109 | 213 | 2531 | 3251 | 2531 | 3249 | 9 | 5 | 1 | 2 | 99.96 | 99.94 | 99.65 | 99.85 | 99.80 | 99.89 | 3.97 | 6.87 | 6.05 | 13.25 |
111 | 214 | 2123 | 2262 | 2123 | 2257 | 39 | 11 | 1 | 5 | 99.95 | 99.78 | 98.20 | 99.51 | 99.07 | 99.65 | 4.89 | 5.97 | 9.09 | 13.11 |
112 | 215 | 2538 | 3363 | 2538 | 3362 | 4 | 4 | 1 | 1 | 99.96 | 99.97 | 99.84 | 99.88 | 99.90 | 99.93 | 1.54 | 2.61 | 5.29 | 6.09 |
113 | 217 | 1794 | 2208 | 1794 | 2201 | 5 | 5 | 1 | 7 | 99.94 | 99.68 | 99.72 | 99.77 | 99.83 | 99.73 | 1.29 | 9.46 | 3.32 | 15.57 |
114 | 219 | 1877 | 2154 | 1877 | 2146 | 20 | 4 | 2 | 8 | 99.89 | 99.63 | 98.95 | 99.81 | 99.42 | 99.72 | 18.02 | 2.92 | 15.51 | 7.36 |
115 | 220 | 1953 | 2048 | 1953 | 2046 | 4 | 0 | 0 | 2 | 100.00 | 99.90 | 99.80 | 100.00 | 99.90 | 99.95 | 0.88 | 1.11 | 3.08 | 2.45 |
116 | 221 | 2382 | 2427 | 2382 | 2422 | 9 | 2 | 30 | 5 | 98.76 | 99.79 | 99.62 | 99.92 | 99.19 | 99.86 | 3.97 | 8.16 | 9.40 | 12.45 |
117 | 222 | 1534 | 2483 | 1534 | 2461 | 18 | 6 | 1 | 22 | 99.93 | 99.11 | 98.84 | 99.76 | 99.38 | 99.43 | 6.50 | 1.99 | 5.92 | 6.24 |
118 | 223 | 2272 | 2605 | 2272 | 2604 | 18 | 8 | 6 | 1 | 99.74 | 99.96 | 99.21 | 99.69 | 99.47 | 99.83 | 15.52 | 3.59 | 13.33 | 6.18 |
119 | 228 | 1987 | 2053 | 1987 | 2037 | 6 | 25 | 0 | 16 | 100.00 | 99.22 | 99.70 | 98.79 | 99.85 | 99.00 | 5.38 | 11.94 | 5.81 | 17.22 |
121 | 230 | 1861 | 2256 | 1861 | 2255 | 9 | 6 | 2 | 1 | 99.89 | 99.96 | 99.52 | 99.73 | 99.71 | 99.85 | 2.60 | 1.40 | 7.35 | 5.99 |
122 | 231 | 2475 | 1571 | 2475 | 1570 | 2 | 10 | 1 | 1 | 99.96 | 99.94 | 99.92 | 99.37 | 99.94 | 99.65 | 1.61 | 2.06 | 1.90 | 11.00 |
123 | 232 | 1515 | 1780 | 1515 | 1763 | 23 | 12 | 3 | 7 | 99.80 | 99.60 | 98.50 | 99.32 | 99.15 | 99.46 | 1.58 | 1.48 | 8.27 | 5.18 |
124 | 233 | 1619 | 3079 | 1619 | 3072 | 8 | 4 | 0 | 7 | 100.00 | 99.77 | 99.51 | 99.87 | 99.75 | 99.82 | 3.27 | 9.00 | 9.06 | 14.90 |
200 | 234 | 2597 | 2753 | 2597 | 2751 | 7 | 5 | 4 | 2 | 99.85 | 99.93 | 99.73 | 99.82 | 99.79 | 99.87 | 16.68 | 0.78 | 16.90 | 4.39 |
Total: 48 | 109,494 | 109,123 | 550 | 371 | 99.7 | 99.5 | 99.6 | Overall: 6.3 | Overall: 10.7 |
N | SV | V | F | Q | |
---|---|---|---|---|---|
N | 17,798 | 86 | 109 | 80 | 45 |
SV | 21 | 516 | 18 | 1 | 0 |
V | 26 | 3 | 1410 | 5 | 3 |
F | 2 | 0 | 2 | 158 | 0 |
Q | 7 | 3 | 4 | 0 | 1594 |
Reference | Actual Beats | TP | FN | FP | Sn% | Pr% | F1% | RPErms (ms) | SDRR (ms) |
---|---|---|---|---|---|---|---|---|---|
This Work | 109,494 | 109,123 | 371 | 550 | 99.6 | 99.50 | 99.5 | 6.31 | 10.69 |
[52] | 109,494 | 109,359 | 126 | 104 | 99.89 | 99.91 | 99.796 | 7.94 | 18.55 |
[51] | 75,052 | 73,647 | - | - | - | - | - | - | - |
[50] | 109,996 | - | - | - | 99.81 | 99.88 | 99.69 | 12.2 | 44.6 |
[49] | 109,985 | - | - | - | 99.56 | 99.05 | 99.29 | - | - |
[47] | 103,724 | 100,135 | 3,380 | 144 | 96.80 | 99.83 | 96.66 | - | - |
[46] | 109,510 | 109,295 | 215 | 214 | 99.80 | 99.80 | 99.61 | - | - |
[45] | 109,494 | 109,270 | 224 | 314 | 99.80 | 99.71 | 99.51 | - | - |
[44] | 73,515 | 72,224 | 46 | 319 | 99.94 | 99.58 | 99.76 | - | - |
[43] | 109,490 | - | - | - | 99.66 | 99.66 | - | - | - |
[42] | 109,494 | 108,611 | 883 | 380 | 99.12 | 99.62 | 98.70 | 10.11 | 280.2 |
Reference | Classes | Records and Beats | Method | HW Platform | System Performance |
---|---|---|---|---|---|
[54] | 5 | Records: 48, beats: 100,062 | Train/test (%): 50/50, 1D-CNN | – | Acc: 98.56, Sn: 97.68, Sp: 99.5 |
[55] | 5 | Records: 30, beats: 2520 | Train/test (%): 80/20, Fast compression DNN | – | Acc: 95.16 |
[53] | 6 | Records: 30, beats: 10,502 | Train/test (%): 75/25, DWT-based analysis | – | Acc: 99.99, Sn: 99.99, Sp: 99.97 |
[61] | 4 | Records: 22, beats: 50,948 | SE-RESNET | Acc: 88.4, F1: 87.4 | |
[57] | 5 | Records: 40 | Train/test (%): 50/50, Wavelet-based QCNN | ARM M4 | Model size: 25 kB, Tinf: 172.3 ms, Acc: 95.1 |
[56] | 5 | Records: 48, beats: 100,062 | Train/test (%): 50/50, QCNN | ARM A55 | Acc: 96.2, Sn: 98.5, Sp: 99.8, Tinf: 7.65 ms, Pavg: 765 mW |
[52] | 5 | Records: 48, beats: 109,494 | Train/test (%): 50/50, Adaptive QRS, CNN | ARM M4 168 MHz | Tproc: 46.61 s/30 min, Acc: 96.97, Sn: 95.1, Sp: 99.1 |
[58] | 4 | Records: 48 | Train/test (%): 50/50, spike timing-based NN | ARM A53 | Acc: 97.9, Pavg: 1.78 J/beat |
[59] | 5 | Records: 48 beats: 100,703 | Train/val/test (%): 70/10/20, Transformer model | GAP9, 49 kB RAM | Acc: 98.97, Pavg: 0.09 mJ/beat, Tinf: 4.28 ms |
[60] | 5 | Records: 48, beats: 100,062 | Train/val/test (%): 75/5/20, RNN | ARM M4 80 MHz | Acc: 90, Tinf: 150 ms |
[62] | 5 | Records: 48 | Train/val/test (%): 70/15/15, energy-aware NAS | ARM M4 80 MHz | Acc: 89.7, Pavg: 4.85 mJ |
This work | 5 | Records: 48, beats: 109,494 | Train/val/test (%): 60/20/20, LSTM | ARM M4 64 MHz | Acc: 98.09, Sn: 98.2, Sp: 99.5, Pavg: 17.7 mW, Tinf: 20 ms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.; Morshed, B.I. Resource-Constrained On-Chip AI Classifier for Beat-by-Beat Real-Time Arrhythmia Detection with an ECG Wearable System. Electronics 2025, 14, 2654. https://doi.org/10.3390/electronics14132654
Rahman M, Morshed BI. Resource-Constrained On-Chip AI Classifier for Beat-by-Beat Real-Time Arrhythmia Detection with an ECG Wearable System. Electronics. 2025; 14(13):2654. https://doi.org/10.3390/electronics14132654
Chicago/Turabian StyleRahman, Mahfuzur, and Bashir I. Morshed. 2025. "Resource-Constrained On-Chip AI Classifier for Beat-by-Beat Real-Time Arrhythmia Detection with an ECG Wearable System" Electronics 14, no. 13: 2654. https://doi.org/10.3390/electronics14132654
APA StyleRahman, M., & Morshed, B. I. (2025). Resource-Constrained On-Chip AI Classifier for Beat-by-Beat Real-Time Arrhythmia Detection with an ECG Wearable System. Electronics, 14(13), 2654. https://doi.org/10.3390/electronics14132654