Multi-Task Encoder Using Peripheral Blood DNA Methylation Data for Alzheimer’s Disease Prediction
Abstract
1. Introduction
- (i)
- Combining modules, such as BiLSTM, LSTM, etc., effectively encodes DNA methylation profile data, capturing spatial and temporal information from instantaneous DNA methylation spectra.
- (ii)
- Using RepeatVector duplicates the vector obtained from the encoder several times, generating a new sequence. RepeatVector replicates this vector multiple times along the new time dimension, producing a three-dimensional output, which serves as the input for the decoder, thereby connecting the encoder and the decoder.
- (iii)
- By applying the same layer and its parameters at each time step of the sequence through the time-distributed layer, sharing the same weights and biases across all time steps, parameter sharing is achieved, reducing the model’s parameter count while ensuring consistency in handling time series data.
2. Methods
2.1. The Workflow of DNA Methylation Sequencing in Predicting AD
2.2. Dataset
2.3. Overview of Proposed Deep Learning Model MT-MBLAE
2.4. Multi-Task Encoder
2.5. Multi-Task Decoder
2.6. Prediction Module
2.7. Performance Metrics
3. Results
3.1. Experimental Setup
3.2. The Analysis of DNA Methylation Data at a Single Stage
3.3. The Analysis of DNA Methylation Data
3.4. The Performance of MT-MBLAE Model
3.4.1. The Relationship Between MT-MBLAE Model Loss and the Number of Epochs
3.4.2. The Impact of Node Quantity on the MT-MBLAE Model in BiLSTM and LSTM
3.4.3. The AUC and AUPRC Performance of MT-MBLAE Model
3.5. Comparison of MT-MBLAE Model with Other Deep Learning Methods
3.5.1. The Performance of MT-MBLAE Model in CN to MCI Prediction Tasks
3.5.2. The Performance of the MT-MBLAE Model in MCI to AD Prediction Task
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perera, S.; Hewage, K.; Gunarathne, C.; Navarathna, R.; Herath, D.; Ragel, R.G. Detection of novel biomarker genes of Alzheimer’s disease using gene expression data. In Proceedings of the 2020 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 28–30 July 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Lee, T.; Lee, H. Prediction of Alzheimer’s disease using blood gene expression data. Sci. Rep. 2020, 10, 3485. [Google Scholar] [CrossRef]
- Ramaswamy, R.; Kandhasamy, P.; Palaniswamy, S. Feature selection for Alzheimer’s gene expression data using modified binary particle swarm optimization. IETE J. Res. 2023, 69, 9–20. [Google Scholar] [CrossRef]
- Ni, A.; Sethi, A. Alzheimer’s Disease Neuroimaging Initiative. Functional genetic biomarkers of alzheimer’s disease and gene expression from peripheral blood. bioRxiv 2021. [Google Scholar] [CrossRef]
- De la Fuente Garcia, S.; Ritchie, C.W.; Luz, S. Artificial intelligence, speech, and language processing approaches to monitoring Alzheimer’s disease: A systematic review. J. Alzheimer’s Dis. 2020, 78, 1547–1574. [Google Scholar] [CrossRef]
- Thapa, S.; Singh, P.; Jain, D.K.; Bharill, N.; Gupta, A.; Prasad, M. Data-driven approach based on feature selection technique for early diagnosis of Alzheimer’s disease. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Murugan, S.; Venkatesan, C.; Sumithra, M.G.; Gao, X.-Z.; Elakkiya, B.; Akila, M.; Manoharan, S. DEMNET: A deep learning model for early diagnosis of Alzheimer diseases and dementia from MR images. IEEE Access 2021, 9, 90319–90329. [Google Scholar] [CrossRef]
- Fisher, C.K.; Smith, A.M.; Walsh, J.R. Machine learning for comprehensive forecasting of Alzheimer’s Disease progression. Sci. Rep. 2019, 9, 13622. [Google Scholar] [CrossRef] [PubMed]
- Modarres, M.H.; Khazaie, V.R.; Ghorbani, M.; Ghoreyshi, A.M.; AkhavanPour, A.; Ebrahimpour, R.; Vahabi, Z.; Kalafatis, C.; Razavi, S.M.K. Early diagnosis of Alzheimer’s dementia with the artificial intelligence-based Integrated Cognitive Assessment: Neuropsychology/computerized neuropsychological assessment. Alzheimer’s Dement. 2020, 16, e042863. [Google Scholar] [CrossRef]
- Esmaeilzadeh, S.; Belivanis, D.I.; Pohl, K.M.; Adeli, E. End-to-end Alzheimer’s disease diagnosis and biomarker identification. In Machine Learning in Medical Imaging. In Proceedings of the 9th International Workshop, MLMI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 16 September 2018; Proceedings 9. Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Yilmaz, A.; Ustun, I.; Ugur, Z.; Akyol, S.; Hu, W.T.; Fiandaca, M.S.; Mapstone, M.; Federoff, H.; Maddens, M.; Graham, S.F. A community-based study identifying metabolic biomarkers of mild cognitive impairment and Alzheimer’s disease using artificial intelligence and machine learning. J. Alzheimer’s Dis. 2020, 78, 1381–1392. [Google Scholar] [CrossRef]
- Song, M.; Jung, H.; Lee, S.; Kim, D.; Ahn, M. Diagnostic classification and biomarker identification of Alzheimer’s disease with random forest algorithm. Brain Sci. 2021, 11, 453. [Google Scholar] [CrossRef]
- Leuzy, A.; Mattsson-Carlgren, N.; Palmqvist, S.; Janelidze, S.; Dage, J.L.; Hansson, O. Blood-based biomarkers for Alzheimer’s disease. EMBO Mol. Med. 2022, 14, e14408. [Google Scholar] [CrossRef]
- AlMansoori, M.E.; Jemimah, S.; Abuhantash, F.; AlShehhi, A. Predicting early Alzheimer’s with blood biomarkers and clinical features. Sci. Rep. 2024, 14, 6039. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Mut, J.V.; Gräff, J. Epigenetic alterations in Alzheimer’s disease. Front. Behav. Neurosci. 2015, 9, 347. [Google Scholar] [CrossRef]
- Esposito, M.; Sherr, G.L. Epigenetic modifications in Alzheimer’s neuropathology and therapeutics. Front. Neurosci. 2019, 13, 449570. [Google Scholar] [CrossRef]
- Ma, Y.; Shi, W.; Dong, Y.; Sun, Y.; Jin, Q. Spatial Multi-Omics in Alzheimer’s Disease: A Multi-Dimensional Approach to Understanding Pathology and Progression. Curr. Issues Mol. Biol. 2024, 46, 4968–4990. [Google Scholar] [CrossRef]
- Madrid, A.; Hogan, K.J.; Papale, L.A.; Clark, L.R.; Asthana, S.; Johnson, S.C.; Alisch, R.S. DNA hypomethylation in blood links B3GALT4 and ZADH2 to Alzheimer’s disease. J. Alzheimer’s Dis. 2018, 66, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, N.; Shinagawa, S.; Nagata, T.; Shimada, K.; Shibata, N.; Ohnuma, T.; Kasanuki, K.; Arai, H.; Yamada, H.; Nakayama, K.; et al. Development of biomarkers based on DNA methylation in the NCAPH2/LMF2 promoter region for diagnosis of Alzheimer’s disease and amnesic mild cognitive impairment. PLoS ONE 2016, 11, e0146449. [Google Scholar] [CrossRef]
- Lunnon, K.; Smith, R.; Hannon, E.; De Jager, P.L.; Srivastava, G.; Volta, M.; Troakes, C.; Al-Sarraj, S.; Burrage, J.; Macdonald, R.; et al. Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer’s disease. Nat. Neurosci. 2014, 17, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Comes, A.L.; Czamara, D.; Adorjan, K.; Anderson-Schmidt, H.; Andlauer, T.F.M.; Budde, M.; Gade, K.; Hake, M.; Kalman, J.L.; Papiol, S.; et al. The role of environmental stress and DNA methylation in the longitudinal course of bipolar disorder. Int. J. Bipolar Disord. 2020, 8, 9. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, L.; Zeng, Y. DNA methylation in Alzheimer’s disease: In brain and peripheral blood. Mech. Ageing Dev. 2020, 191, 111319. [Google Scholar] [CrossRef]
- Fransquet, P.D.; Lacaze, P.; Saffery, R.; Phung, J.; Parker, E.; Shah, R.; Murray, A.; Woods, R.L.; Ryan, J. Blood DNA methylation signatures to detect dementia prior to overt clinical symptoms. Alzheimer’s Dementia Diagn. Assess. Dis. Monit. 2020, 12, e12056. [Google Scholar] [CrossRef]
- Bahado-Singh, R.O.; Vishweswaraiah, S.; Aydas, B.; Yilmaz, A.; Metpally, R.P.; Carey, D.J.; Crist, R.C.; Berrettini, W.H.; Wilson, G.D.; Imam, K.; et al. Artificial intelligence and leukocyte epigenomics: Evaluation and prediction of late-onset Alzheimer’s disease. PLoS ONE 2021, 16, e0248375. [Google Scholar] [CrossRef]
- Park, C.; Ha, J.; Park, S. Prediction of Alzheimer’s disease based on deep neural network by integrating gene expression and DNA methylation dataset. Expert. Syst. Appl. 2020, 140, 112873. [Google Scholar] [CrossRef]
- Tan, W.Y.; Hargreaves, C.; Chen, C.; Hilal, S. A machine learning approach for early diagnosis of cognitive impairment using population-based data. J. Alzheimer’s Dis. 2023, 91, 449–461. [Google Scholar] [CrossRef]
- Bahado-Singh, R.O.; Radhakrishna, U.; Gordevičius, J.; Aydas, B.; Yilmaz, A.; Jafar, F.; Imam, K.; Maddens, M.; Challapalli, K.; Metpally, R.P.; et al. Artificial intelligence and circulating cell-free DNA methylation profiling: Mechanism and detection of Alzheimer’s disease. Cells 2022, 11, 1744. [Google Scholar] [CrossRef] [PubMed]
- Mahendran, N.; PM, D.R.V. A deep learning framework with an embedded-based feature selection approach for the early detection of the Alzheimer’s disease. Comput. Biol. Med. 2022, 141, 105056. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Haber, A.; Preuss, C.; John, C.; Uyar, A.; Yang, H.S.; Logsdon, B.A.; Philip, V.; Karuturi, R.K.M.; Carter, G.W.; et al. Transfer learning-trained convolutional neural networks identify novel MRI biomarkers of Alzheimer’s disease progression. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2021, 13, e12140. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Qiu, R.G.; Yu, M. Predictive modeling of the progression of Alzheimer’s disease with recurrent neural networks. Sci. Rep. 2018, 8, 9161. [Google Scholar] [CrossRef]
- Nguyen, M.; He, T.; An, L.; Alexander, D.C.; Feng, J.; Yeo, B.T. Predicting Alzheimer’s disease progression using deep recurrent neural networks. NeuroImage 2020, 222, 117203. [Google Scholar] [CrossRef]
- Lee, G.; Nho, K.; Kang, B.; Sohn, K.-A.; Kim, D. Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Sci. Rep. 2019, 9, 1952. [Google Scholar] [CrossRef]
- Cui, R.; Liu, M.; Alzheimer’s Disease Neuroimaging Initiative. RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease. Comput. Med. Imaging Graph. 2019, 73, 1–10. [Google Scholar] [CrossRef]
- Chen, L.; Saykin, A.J.; Yao, B.; Zhao, F.; Alzheimer’s Disease Neuroimaging Initiative. Multi-task deep autoencoder to predict Alzheimer’s disease progression using temporal DNA methylation data in peripheral blood. Comput. Struct. Biotechnol. J. 2022, 20, 5761–5774. [Google Scholar] [CrossRef]
- Wu, K.; Wu, J.; Feng, L.; Yang, B.; Liang, R.; Yang, S.; Zhao, R. An attention-based CNN-LSTM-BiLSTM model for short-term electric load forecasting in integrated energy system. Int. Trans. Electr. Energy Syst. 2021, 31, e12637. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Zhang, Z.; Sabuncu, M.R. Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural Inf. Process. Syst. 2018, 31, 8792–8802. [Google Scholar]
- Li, S.; Li, W.; Cook, C.; Zhu, C.; Gao, Y. Independently recurrent neural network (indrnn): Building a longer and deeper rnn. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Ozenne, B.; Subtil, F.; Maucort-Boulch, D. The precision–recall curve overcame the optimism of the receiver operating characteristic curve in rare diseases. J. Clin. Epidemiol. 2015, 68, 855–859. [Google Scholar] [CrossRef] [PubMed]
- Okewu, E.; Misra, S.; Lius, F.S. Parameter tuning using adaptive moment estimation in deep learning neural networks. In Proceedings of the Computational Science and Its Applications–ICCSA 2020: 20th International Conference, Cagliari, Italy, 1–4 July 2020; Proceedings, Part VI 20. Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Erhard, F. Estimating pseudocounts and fold changes for digital expression measurements. Bioinformatics 2018, 34, 4054–4063. [Google Scholar] [CrossRef]
- Han, D.; Kwon, S. Application of machine learning method of data-driven deep learning model to predict well production rate in the shale gas reservoirs. Energies 2021, 14, 3629. [Google Scholar] [CrossRef]
Experiment | AUC | ACC | F1 | MCC | AUPRC |
---|---|---|---|---|---|
1 | 1 | 0.9 | 0.727 | 0.711 | 1 |
2 | 0.988 | 0.933 | 0.833 | 0.811 | 0.997 |
3 | 0.988 | 0.933 | 0.857 | 0.814 | 0.997 |
4 | 0.932 | 0.867 | 0.75 | 0.671 | 0.974 |
5 | 1 | 0.9 | 0.727 | 0.711 | 1 |
6 | 0.913 | 0.9 | 0.727 | 0.711 | 0.968 |
7 | 0.988 | 0.367 | 0.424 | 0.216 | 0.996 |
8 | 1 | 0.833 | 0.444 | 0.484 | 1 |
9 | 0.988 | 0.933 | 0.857 | 0.814 | 0.997 |
10 | 1 | 0.5 | 0.483 | 0.333 | 1 |
Experiment | AUC | ACC | F1 | MCC | AUPRC |
---|---|---|---|---|---|
1 | 0.813 | 0.7 | 0.455 | 0.44 | 0.84 |
2 | 0.816 | 0.8 | 0.75 | 0.588 | 0.92 |
3 | 0.826 | 0.65 | 0.632 | 0.311 | 0.863 |
4 | 0.893 | 0.825 | 0.774 | 0.641 | 0.927 |
5 | 0.895 | 0.475 | 0.618 | 0.197 | 0.919 |
6 | 0.895 | 0.6 | 0.667 | 0.342 | 0.843 |
7 | 0.898 | 0.85 | 0.812 | 0.692 | 0.923 |
8 | 0.9 | 0.7 | 0.455 | 0.44 | 0.921 |
9 | 0.903 | 0.725 | 0.522 | 0.489 | 0.965 |
10 | 0.949 | 0.825 | 0.759 | 0.651 | 0.919 |
Model | Description of the Methods |
---|---|
CNN1 | A convolutional layer and a Dense layer. |
CNN2 | Two convolutional layers and one Dense layer. |
LSTM | An LSTM network composed of an LSTM layer. |
LSTM2 | An LSTM network composed of an LSTM layer. |
BiLSTM1 | A BiLSTM network comprising of a BiLSTM layer and an LSTM layer. |
BiLSTM2 | A BiLSTM network comprising of a BiLSTM layer and two LSTM layers. |
CNNLSTM1 | One convolutional layer and an LSTM layer. |
CNNLSTM2 | One convolutional layer and two LSTM layers. |
MT-CAE | The encoder is made up of two convolutional layers and one pooling layer, the decoder is made up of a convolutional neural network with two upsampling layers. |
MT-LSTMAE | The encoder is made up of two LSTM layers, and the decoder is made up of an LSTM layer and a Dense layer in an LSTM network. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Long, H.; Zeng, R.; Zhang, G. Multi-Task Encoder Using Peripheral Blood DNA Methylation Data for Alzheimer’s Disease Prediction. Electronics 2025, 14, 2655. https://doi.org/10.3390/electronics14132655
Yu X, Long H, Zeng R, Zhang G. Multi-Task Encoder Using Peripheral Blood DNA Methylation Data for Alzheimer’s Disease Prediction. Electronics. 2025; 14(13):2655. https://doi.org/10.3390/electronics14132655
Chicago/Turabian StyleYu, Xia, Haixia Long, Rao Zeng, and Guoqiang Zhang. 2025. "Multi-Task Encoder Using Peripheral Blood DNA Methylation Data for Alzheimer’s Disease Prediction" Electronics 14, no. 13: 2655. https://doi.org/10.3390/electronics14132655
APA StyleYu, X., Long, H., Zeng, R., & Zhang, G. (2025). Multi-Task Encoder Using Peripheral Blood DNA Methylation Data for Alzheimer’s Disease Prediction. Electronics, 14(13), 2655. https://doi.org/10.3390/electronics14132655