# Design of 2.5 Bit Programmable Metasurface Unit Cell for Electromagnetic Manipulation

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. High-Quantitative-Accuracy Metasurface Unit Cell Modeling

#### Unit Design

_{1}, L

_{2}, L

_{3}, H

_{1}, H

_{2}, H

_{3}, Line

_{1_L}, Line

_{2_L}, and Line

_{3_L}, will be used as tunable parameters for cell optimization.

## 3. Optimization Algorithm

#### 3.1. Genetic Optimization Algorithm

#### 3.2. Algorithmic Framework

#### 3.3. Design of the Fitness Function

_{i}(θ) − f

_{i}

_{−1}(θ)|}

_{i}(θ) is the phase response at the sorted operating frequency, the value of the phase response increases with the subscript 1~i, and q is the number of quantized phases.

#### 3.4. Algorithmic Implementation

## 4. Optimization and Measurement Results

#### 4.1. Metasurface Unit Optimization Results

#### 4.2. Unit Measurement

#### 4.3. The Metasurface Antenna Design and Simulation Results

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Naqvi, A.H.; Lim, S. Review of recent phased arrays for millimeter-wave wireless communication. Sensors
**2018**, 18, 3194. [Google Scholar] [CrossRef] [PubMed] - Nayeri, P.; Yang, F.; Elsherbeni, A.Z. Beam-scanning reflectarray antennas: A technical overview and state of the art. IEEE Antennas Propag. Mag.
**2015**, 57, 32–47. [Google Scholar] [CrossRef] - Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light. Sci. Appl.
**2014**, 3, e218. [Google Scholar] [CrossRef] - Singh, K.; Saikia, M.; Thiyagarajan, K.; Thalakotuna, D.; Esselle, K.; Kodagoda, S. Multi-functional reconfigurable intelligent surfaces for enhanced sensing and communication. Sensors
**2023**, 23, 8561. [Google Scholar] [CrossRef] [PubMed] - Gao, L.; Zhou, Y.; Zhu, H.; Zheng, P.; Liu, J.; He, Z.; Xu, Z.; Cui, Y. Reconfigurable amplitude-phase-coding metasurface with flexible beamforming capability. Electronics
**2023**, 12, 4565. [Google Scholar] [CrossRef] - Selvaraj, M.; Vijay, R.; Anbazhagan, R.; Rengarajan, A. Reconfigurable metasurface: Enabling tunable reflection in 6g wireless communications. Sensors
**2023**, 23, 9166. [Google Scholar] [CrossRef] [PubMed] - Yang, Y.; Wang, W.; Moitra, P.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett.
**2014**, 14, 1394–1399. [Google Scholar] [CrossRef] [PubMed] - Zhang, T.Y.; Sun, S.; Gou, Y.; Wang, H.L.; Ma, H.F.; Cui, T.J. Frequency-multiplexed holographic-reflective coding metasurface for independent controls of surface wave and spatially propagating wave. Adv. Opt. Mater.
**2023**, 11, 202202832. [Google Scholar] [CrossRef] - Lin, R.J.; Su, V.-C.; Wang, S.; Chen, M.K.; Chung, T.L.; Chen, Y.H.; Kuo, H.Y.; Chen, J.-W.; Chen, J.; Huang, Y.-T.; et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol.
**2019**, 14, 227–231. [Google Scholar] [CrossRef] - Han, J.; Li, L.; Ma, X.; Gao, X.; Mu, Y.; Liao, G.; Luo, Z.J.; Cui, T.J. Adaptively smart wireless power transfer using 2-bit programmable metasurface. IEEE Trans. Ind. Electron.
**2022**, 69, 8524–8534. [Google Scholar] [CrossRef] - Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol.
**2015**, 10, 308–312. [Google Scholar] [CrossRef] - Wang, Y.; Guan, C.; Ding, X.; Zhang, K.; Wang, J.; Burokur, S.N.; Wu, Q. Huygens’ metasurface with stable transmission response under wide range of incidence angle. IEEE Antennas Wirel. Propag. Lett.
**2022**, 21, 630–634. [Google Scholar] [CrossRef] - Yang, H.; Yang, F.; Xu, S.; Li, M.; Cao, X.; Gao, J.; Zheng, Y. A study of phase quantization effects for reconfigurable reflectarray antennas. IEEE Antennas Wirel. Propag. Lett.
**2017**, 16, 302–305. [Google Scholar] [CrossRef] - Yang, H.; Yang, F.; Xu, S.; Mao, Y.; Li, M.; Cao, X.; Gao, J. A 1-bit 10 × 10 reconfigurable reflectarray antenna: Design, optimization, and experiment. IEEE Trans. Antennas Propag.
**2016**, 64, 2246–2254. [Google Scholar] [CrossRef] - Liang, J.C.; Cheng, Q.; Gao, Y.; Xiao, C.; Gao, S.; Zhang, L.; Jin, S.; Cui, T.J. An angle-insensitive 3-bit reconfigurable intelligent surface. iEEE Trans. Antennas Propag.
**2022**, 70, 8798–8808. [Google Scholar] [CrossRef] - Trampler, M.E.; Lovato, R.E.; Gong, X. Dual-resonance continuously beam-scanning x-band reflectarray antenna. IEEE Trans. Antennas Propag.
**2020**, 68, 6080–6087. [Google Scholar] [CrossRef] - Tang, W.; Dai, J.Y.; Chen, M.; Li, X.; Cheng, Q.; Jin, S.; Wong, K.K.; Cui, T.J. Programmable metasurface-based rf chain-free 8psk wireless transmitter. Electron. Lett.
**2019**, 55, 417–420. [Google Scholar] [CrossRef] - Li, P.; Ren, J.; Chen, Y.; Ren, X.; Xu, K.-D.; Yin, Y.-Z.; Shen, M. Design of low-cost single-layer 2-bit reflective programmable metasurface based on folded ground. IEEE Trans. Microw. Theory Tech.
**2023**, 71, 3455–3465. [Google Scholar] [CrossRef] - Xiang, B.J.; Dai, X.; Luk, K.-M. A Wideband low-cost reconfigurable reflectarray antenna with 1-bit resolution. IEEE Trans. Antennas Propag.
**2022**, 70, 7439–7447. [Google Scholar] [CrossRef] - Kim, J.; Kim, J.; Oh, J.H.; Wi, S.H.; Oh, J. Rotated feed-combined reconfigurable transmit ris with disparate deployment of 1-bit hybrid units for b5g/6g. IEEE Trans. Antennas Propag.
**2023**, 71, 5457–5462. [Google Scholar] [CrossRef] - Fazal, D.; Hong, I.-P. A new unit-cell design for a 2-bit reflective metasurface for ris applications. Electronics
**2023**, 12, 4220. [Google Scholar] [CrossRef] - Rains, J.; Kazim, J.U.R.; Zhang, L.; Abbasi, Q.H.; Imran, M.; Tukmanov, A. 2.75-bit reflecting unit cell design for reconfigurable intelligent surfaces. In Proceedings of the 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, 4–10 December 2021; pp. 335–336. [Google Scholar]
- Saifullah, Y.; Zhang, F.; Yang, G.-M.; Xu, F. 3-bit programmable reflective metasurface. In Proceedings of the 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Hangzhou, China, 3–6 December 2018; pp. 1–2. [Google Scholar]
- Wang, X.; Xia, D.; Li, G.; Ma, X.; Xu, P.; Han, J.; Liu, H.; Li, L. Design and waveguide measurement of 2-bit reconfigurable amplification metasurface cell. IEEE Antennas Wirel. Propag. Lett.
**2023**, 22, 2090–2094. [Google Scholar] [CrossRef] - Holland, J.H. Genetic algorithms and the optimal allocation of trials. SIAM J. Comput.
**1973**, 2, 88–105. [Google Scholar] [CrossRef] - Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput.
**2002**, 6, 182–197. [Google Scholar] [CrossRef] - Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm; TIK-Report; ETH Zurich: Zurich, Switzerland, 2001; Volume 103. [Google Scholar] [CrossRef]
- WoodyBuendia. Hfss-Matlab-Api. Available online: https://github.com/WoodyBuendia/HFSS-MATLAB-API (accessed on 10 March 2024).
- KORVIN011. Ads-Matlab-Interface. Available online: https://github.com/korvin011/ADS-Matlab-Interface (accessed on 10 March 2024).
- Wu, L.-X.; Hu, Q.; Luo, X.-Y.; Zhao, J.; Jiang, T.; Chen, K.; Feng, Y. Wideband Dual-Feed Dual-Polarized Reflectarray Antenna Using Anisotropic Metasurface. IEEE Antennas Wirel. Propag. Lett.
**2022**, 21, 129–133. [Google Scholar] [CrossRef]

**Figure 12.**Beam scanning simulation results for different angles. (

**a**) For 0° beam scanning. (

**b**) For 30° beam scanning.

Diode 1 | ON | OFF | |||
---|---|---|---|---|---|

Diode 3 | ON | OFF | ON | OFF | |

Diodes 2 and 4 | |||||

ON | 000 | 001 | 100 | 101 | |

OFF | 010 | 011 | 110 | 111 |

Operating state | 100 | 110 | 001 | 011 | 010/000 | 101/111 |

Reflection phase | −155° | −97° | −29° | 37° | 95° | 136° |

Parameters | H_{1} | H_{2} | H_{3} | L_{1} | L_{2} |

Length/mm | 3.48 | 10.07 | 3.40 | 11.08 | 6.66 |

Parameters | L_{3} | Line_{1_L} | Line_{2_L} | Line_{3_L} | |

Length/mm | 12.80 | 2.48 | 7.37 | 2.18 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Luan, Y.; Lu, Y.; Ren, J.; Sun, F.
Design of 2.5 Bit Programmable Metasurface Unit Cell for Electromagnetic Manipulation. *Electronics* **2024**, *13*, 1648.
https://doi.org/10.3390/electronics13091648

**AMA Style**

Luan Y, Lu Y, Ren J, Sun F.
Design of 2.5 Bit Programmable Metasurface Unit Cell for Electromagnetic Manipulation. *Electronics*. 2024; 13(9):1648.
https://doi.org/10.3390/electronics13091648

**Chicago/Turabian Style**

Luan, Yuchen, Yuyang Lu, Jian Ren, and Fukun Sun.
2024. "Design of 2.5 Bit Programmable Metasurface Unit Cell for Electromagnetic Manipulation" *Electronics* 13, no. 9: 1648.
https://doi.org/10.3390/electronics13091648