A Novel Ground Slot-Based Dual-Band Massive Multiple-Input Multiple-Output (MIMO) Antenna for n47 and n48 Smartphone Applications
Abstract
:1. Introduction
2. Antenna Element
Ground Slot Effect
3. Massive 14-Element MIMO System
4. MIMO Parameters
4.1. ECC
4.2. DG
5. Association of Massive MIMO Antennas with Human Body Parts
SAR Analysis
6. Experimental Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mak, K.M.; Lai, H.W.; Luk, K.M.; Chan, C.H. Circularly polarized patch antenna for future 5G mobile phones. IEEE Access 2015, 2, 1521–1529. [Google Scholar]
- Al-Dulaimi, A.; Al-Rubaye, S.; Ni, Q.; Sousa, E. 5G communications race: Pursuit of more capacity triggers LTE in unlicensed band. IEEE Veh. Technol. Mag. 2015, 10, 43–51. [Google Scholar] [CrossRef]
- Chen, X.; Shoaib, S.; Shoaib, I.; Shoaib, N.; Parini, C.G. MIMO antennas for mobile handsets. IEEE An-Tennas Wirel. Propag. Lett. 2015, 14, 799–802. [Google Scholar]
- Ban, Y.-L.; Li, C.; Sim, C.-Y.-D.; Wu, G.; Wong, K.-L. 4G/5G multiple antennas for future multi-mode smartphone applications. IEEE Access 2016, 4, 2981–2988. [Google Scholar] [CrossRef]
- Li, M.Y.; Xu, Z.Q.; Ban, Y.L.; Sim, C.Y.D.; Yu, Z.F. Eight-port orthogonally dualpolarised MIMO antennas using loop structures for 5G smartphone. IET Microw. Antennas Propag. 2017, 11, 1810–1816. [Google Scholar] [CrossRef]
- Li, M.-Y.; Ban, Y.L.; Xu, Z.Q.; Wu, G.; Kang, K.; Yu, Z.F. Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications. IEEE Trans. Antennas Propag. 2016, 64, 3820–3830. [Google Scholar] [CrossRef]
- Tsai, C.-Y.; Wong, K.-L.; Li, W.-Y. Experimental results of the multi-Gbps smartphone with 20 multi-input multi-output (MIMO) antennas in the 20–12 MIMO operation. Microw. Opt. Technol. Lett. 2018, 60, 20012010. [Google Scholar] [CrossRef]
- Wong, K.-L.; Tsai, C.-Y.; Lu, J.-Y. Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone. IEEE Trans. Antennas Propag. 2017, 65, 1765–1778. [Google Scholar] [CrossRef]
- Deng, J.Y.; Yao, J.; Sun, D.Q.; Guo, L.X. Ten-element MIMO antenna for 5G terminals. Microw. Opt. Technol. Lett. 2018, 60, 3045–3049. [Google Scholar] [CrossRef]
- Wong, K.L.; Lin, B.W.; Li, W.-Y. Dual-band dual inverted-F/loop antennas as a compact decoupled building block for forming eight 3.5/5.8-GHz MIMO antennas in the future smartphone. Microw. Opt. Technol. Lett. 2017, 59, 2715–2721. [Google Scholar] [CrossRef]
- Guo, J.; Cui, L.; Li, C.; Sun, B. Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications. IEEE Trans. Antennas Propag. 2018, 66, 7412–7417. [Google Scholar] [CrossRef]
- Li, Y.; Sim, C.Y.D.; Luo, Y.; Yang, G. 12-port 5G massive MIMO antenna array in sub-6 GHz mobile handset for LTE bands 42/43/46 applications. IEEE Access 2018, 6, 344–354. [Google Scholar] [CrossRef]
- Li, Y.; Sim, C.-Y.-D.; Luo, Y.; Yang, G. Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphones. IEEE Access 2018, 6, 28041–28053. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, H.; Gao, S.; Wang, H.; Cheng, Y. Multimode decoupling technique with independent tuning characteristic for mobile terminals. IEEE Trans. Antennas Propag. 2017, 65, 6739–6751. [Google Scholar] [CrossRef]
- Sun, L.B.; Feng, H.; Li, Y.; Zhang, Z. Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs. IEEE Trans. Antennas Propag. 2018, 66, 6364–6369. [Google Scholar] [CrossRef]
- Zhao, A.; Ren, Z. Multiple-input and multiple-output antenna system with self-isolated antenna element for fifth-generation mobile terminals. Microw. Opt. Technol. Lett. 2019, 61, 20–27. [Google Scholar] [CrossRef]
- Li, M.-Y.; Ban, Y.-L.; Xu, Z.-Q.; Guo, J.; Yu, Z.-F. Tri-polarized 12-antenna MIMO array for future 5G smartphone applications. IEEE Access 2018, 6, 6160–6170. [Google Scholar] [CrossRef]
- Zhao, A.; Ren, Z. Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 152–156. [Google Scholar] [CrossRef]
- Huang, G.-L.; Chang, T.-Y.; Sim, C.-Y.-D. Wideband Eight-Antenna Array Designs for 5G Smartphone Applications. Electronics 2024, 13, 2995. [Google Scholar] [CrossRef]
- Zahid, M.; Ali, Q.; Bhowmike, N.; Bolla, D.P.; Shoaib, S.; Amin, Y. Dual-Band MIMO Antenna for n79 and sub-7 GHz Smartphone Applications. Electronics 2024, 13, 2724. [Google Scholar] [CrossRef]
- Available online: https://en.wikipedia.org/wiki/5GNRfrequencybands (accessed on 30 August 2024).
- Sharawi, M.S. Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]. IEEE Antennas Propag. Mag. 2013, 55, 218–232. [Google Scholar] [CrossRef]
- IEEE Std. C95.1; IEEE Standards for Safety Levels with Request to Human Exposure to Radiofrequency Electromagnetic Fields, 3 kHz to 300 GHz. IEEE: Piscataway Township, NJ, USA, 1999.
- ICNIRP (International Commission on Non-Ionizing Radiation Protection). Guidelines for limiting expo-sure to time-varying electric magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 1998, 74, 494–522. [Google Scholar]
- Zou, H.; Li, Y.; Sim, C.-Y.-D.; Yang, G. Design of 8 × 8 dual-band MIMO antenna array for 5G smartphone applications. Int. J. RF Microw. Comput. Aided Eng. 2018, 28, e21420. [Google Scholar] [CrossRef]
- Wong, K.L.; Lu, J.Y.; Chen, L.Y.; Li, W.Y.; Ban, Y.L. 8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smart-phone. Microw. Opt. Technol. Lett. 2016, 58, 174–181. [Google Scholar] [CrossRef]
- Cui, L.; Guo, J.; Liu, Y.; Sim, C.-Y.-D. An 8-element dual-band MIMO antenna with decoupling stub for 5G smartphone applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2095–2099. [Google Scholar] [CrossRef]
Parameter | Value (mm) | Parameter | Value (mm) |
---|---|---|---|
L1 | 150 | W1 | 70 |
L2 | 12.55 | L7 | 9.35 |
L3 | 6.55 | W2 | 14.6 |
L4 | 2.9 | W3 | 15.8 |
L5 | 3.1 | W4 | 7 |
L6 | 10.5 | W5 | 3 |
Antennas | Realized Gain (dBi) at 3.6 GHz | Total Efficiency (−dB) at 3.6 GHz | Realized Gain (dBi) at 5.9 GHz | Total Efficiency (−dB) at 5.9 GHz |
---|---|---|---|---|
Ant 1 | 1.48 | 6.73 | 2.76 | 4.26 |
Ant 2 | 0.36 | 7.36 | 1.78 | 4.55 |
Ant 3 | 0.39 | 7.65 | 2.06 | 4.62 |
Ant 4 | 0.03 | 7.70 | 2.16 | 4.56 |
Ant 5 | 0.86 | 7.47 | 2.14 | 4.41 |
Ant 6 | 0.30 | 7.38 | 2.76 | 4.14 |
Ant 7 | 1.24 | 6.53 | 3.44 | 3.82 |
Ant 8 | 1.29 | 6.69 | 2.48 | 4.18 |
Ant 9 | 0.39 | 7.43 | 1.68 | 4.54 |
Ant 10 | 0.35 | 7.79 | 2.16 | 4.76 |
Ant 11 | 0.03 | 7.86 | 2.26 | 4.69 |
Ant 12 | 0.62 | 7.55 | 2.64 | 4.40 |
Ant 13 | 0.39 | 7.46 | 2.92 | 4.06 |
Ant 14 | 1.00 | 6.53 | 3.66 | 3.75 |
Port Number | SAR Value (W/kg) | Port Number | SAR Value (W/kg) |
---|---|---|---|
Port 1 | 0.502 | Port 2 | 0.583 |
Port 3 | 1.01 | Port 4 | 0.722 |
Port 5 | 1.07 | Port 6 | 1.7 |
Port 7 | 1.94 | Port 8 | 0.647 |
Port 9 | 0.691 | Port 10 | 2.57 |
Port 11 | 2.59 | Port 12 | 1.72 |
Port 13 | 0.505 | Port 14 | 0.766 |
Ref. and Ports | Bandwidth (GHz) | Isolation (−dB) | ECC | Total Eff. (%) |
---|---|---|---|---|
Prop., 14 | 3.55–3.70 and 5.855–5.925 (−6 dB) | <10 and <17 | <0.04 and 0.017 | 65–76 |
[19], 8 | 3.3–5.0 and 5.15–5.925 (−6 dB) | <10 and <22 | <0.03 and <0.1 | 51–84 |
[20], 10 | 4.4–7.1 (−6 dB) | <17 | <0.002 | 64–82 |
[25], 8 | 3.4–3.6 (−10 dB), 5.15–5.925 (−6 dB) | <12 and <12 | <0.1 and <0.04 | 50–65 |
[26], 16 | 3.4–3.6 (−6 dB) | <10 | <0.32 | 40–50 |
[27], 8 | 3.3–4.2 and 4.8–5.0 (−6 dB) | not-mentioned | <0.1 and <0.12 | 53.8–79.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahid, M.; Akbar, M.U.; Bhowmike, N.; Bolla, D.P.; Talib, A.U.; Shoaib, S.; Amin, Y.; Shahid, S. A Novel Ground Slot-Based Dual-Band Massive Multiple-Input Multiple-Output (MIMO) Antenna for n47 and n48 Smartphone Applications. Electronics 2024, 13, 4296. https://doi.org/10.3390/electronics13214296
Zahid M, Akbar MU, Bhowmike N, Bolla DP, Talib AU, Shoaib S, Amin Y, Shahid S. A Novel Ground Slot-Based Dual-Band Massive Multiple-Input Multiple-Output (MIMO) Antenna for n47 and n48 Smartphone Applications. Electronics. 2024; 13(21):4296. https://doi.org/10.3390/electronics13214296
Chicago/Turabian StyleZahid, Muhammad, Muhammad Uzair Akbar, Nirman Bhowmike, Devi Prasanth Bolla, Asad Ullah Talib, Sultan Shoaib, Yasar Amin, and Saleem Shahid. 2024. "A Novel Ground Slot-Based Dual-Band Massive Multiple-Input Multiple-Output (MIMO) Antenna for n47 and n48 Smartphone Applications" Electronics 13, no. 21: 4296. https://doi.org/10.3390/electronics13214296
APA StyleZahid, M., Akbar, M. U., Bhowmike, N., Bolla, D. P., Talib, A. U., Shoaib, S., Amin, Y., & Shahid, S. (2024). A Novel Ground Slot-Based Dual-Band Massive Multiple-Input Multiple-Output (MIMO) Antenna for n47 and n48 Smartphone Applications. Electronics, 13(21), 4296. https://doi.org/10.3390/electronics13214296