A Comprehensive Overview of the Temperature-Dependent Modeling of the High-Power GaN HEMT Technology Using mm-Wave Scattering Parameter Measurements
Abstract
:1. Introduction
2. DUT and Modelling Methodologies
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.A.; Bhattarai, A.; Kuznia, J.N.; Olson, D.T. High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction. Appl. Phys. Lett. 1993, 63, 1214–1215. [Google Scholar] [CrossRef]
- Runton, D.W.; Trabert, B.; Shealy, J.B.; Vetury, R. History of GaN: High-Power RF Gallium Nitride (GaN) from Infancy to Manufacturable Process and Beyond. IEEE Microw. Mag. 2013, 14, 82–93. [Google Scholar] [CrossRef]
- Zeng, F.; An, J.X.; Zhou, G.; Li, W.; Wang, H.; Duan, T.; Jiang, L.; Yu, H. A Comprehensive Review of Recent Progress on GaN High Electron Mobility Transistors: Devices, Fabrication and Reliability. Electronics 2018, 7, 377. [Google Scholar] [CrossRef]
- Teo, K.H.; Zhang, Y.; Chowdhury, N.; Rakheja, S.; Ma, R.; Xie, Q.; Yagyu, E.; Yamanaka, K.; Li, K.; Palacios, T. Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects. J. Appl. Phys. 2021, 130, 160902. [Google Scholar] [CrossRef]
- Giofré, R.; Colantonio, P.; Gonzalez, L.; De Arriba, F.; Cabria, L.; Molina, D.L.; Garrido, E.C.; Vitobello, F. Design realization and tests of a space-borne GaN solid state power amplifier for second generation Galileo navigation system. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 2383–2396. [Google Scholar] [CrossRef]
- Nasri, A.; Estebsari, M.; Toofan, S.; Piacibello, A.; Pirola, M.; Camarchia, V.; Ramella, C. Design of a Wideband Doherty Power Amplifier with High Efficiency for 5G Application. Electronics 2021, 10, 873. [Google Scholar] [CrossRef]
- Piacibello, A.; Costanzo, F.; Giofré, R.; Quaglia, R.; Colantonio, P.; Pirola, M.; Camarchia, V. Evaluation of a stacked-FET cell for high-frequency applications (invited paper). Int. J. Numer. Model. Electron. Netw. Dev. Field 2021, 34, e2881. [Google Scholar] [CrossRef]
- Florian, C.; Traverso, P.A.; Santarelli, A. A Ka-Band MMIC LNA in GaN-on-Si 100-nm Technology for High Dynamic Range Radar Receivers. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 161–164. [Google Scholar] [CrossRef]
- Scappaviva, F.; Bosi, G.; Biondi, A.; D’Angelo, S.; Cariani, L.; Vadalà, V.; Raffo, A.; Resca, D.; Cipriani, E.; Vannini, G. Advances in Ku-Band GaN Single Chip Front End for Space SARs: From System Specifications to Technology Selection. Electronics 2022, 11, 2998. [Google Scholar] [CrossRef]
- Mayeda, J.; Lie, D.Y.C.; Lopez, J. Broadband Millimeter-Wave 5G Power Amplifier Design in 22 nm CMOS FD-SOI and 40 nm GaN HEMT. Electronics 2022, 11, 683. [Google Scholar] [CrossRef]
- Ma, C.-T.; Gu, Z.-H. Review of GaN HEMT Applications in Power Converters over 500 W. Electronics 2019, 8, 1401. [Google Scholar] [CrossRef]
- Khandelwal, S.; Labrecque, M.; Huang, Y.; Qi, F.; Wang, Z.; Smith, P.; Wu, Y.; Lal, R. An Accurate Compact Model for GaN Power Switches with the Physics-based ASM-HEMT Model. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 14–17 June 2021; pp. 2389–2392. [Google Scholar]
- Beye, M.L.; Wickramasinghe, T.; Mogniotte, J.F.; Phung, L.V.; Idir, N.; Maher, H.; Allard, B. Active Gate Driver and Management of the Switching Speed of GaN Transistors during Turn-On and Turn-Off. Electronics 2021, 10, 106. [Google Scholar] [CrossRef]
- Liu, C.; Cai, Y.; Zou, X.; Lau, K.M. Low-Leakage High-Breakdown Laterally Integrated HEMT-LED via n-GaN Electrode. IEEE Photon. Technol. Lett. 2016, 28, 1130–1133. [Google Scholar] [CrossRef]
- Cai, Y.; Zou, X.; Liu, C.; Lau, K.M. Voltage-Controlled GaN HEMT-LED Devices as Fast-Switching and Dimmable Light Emitters. IEEE Electron Device Lett. 2018, 39, 224–227. [Google Scholar] [CrossRef]
- Chen, D.; Li, D.; Zeng, G.; Hu, F.C.; Li, Y.C.; Chen, Y.C.; Li, X.X.; Tang, J.; Shen, C.; Chi, N.; et al. GaN-Based Micro-Light-Emitting Diode Driven by a Monolithic Integrated Ultraviolet Phototransistor. IEEE Electron Device Lett. 2022, 43, 80–83. [Google Scholar] [CrossRef]
- Xie, Q.; Chowdhury, N.; Zubair, A.; Lozano, M.S.; Lemettinen, J.; Colangelo, M.; Medeiros, O.; Charaev, I.; Berggren, K.K.; Gumann, P.; et al. NbN-Gated GaN Transistor Technology for Applications in Quantum Computing Systems. In Proceedings of the Symposium on VLSI Technology, Kyoto, Japan, 13–19 June 2021; pp. 1–2. [Google Scholar]
- Trew, R.J.; Bilbro, G.L.; Kuang, W.; Liu, Y.; Yin, H. Microwave AlGaN/GaN HFETs. IEEE Microw. Mag. 2005, 6, 56–66. [Google Scholar] [CrossRef]
- Mishra, U.K.; Shen, L.; Kazior, T.E.; Wu, Y.-F. GaN-Based RF Power Devices and Amplifiers. Proc. IEEE 2008, 96, 287–305. [Google Scholar] [CrossRef]
- Pengelly, R.S.; Wood, S.M.; Milligan, J.W.; Sheppard, S.T.; Pribble, W.L. A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs. IEEE Trans. Microw. Theory Techn. 2012, 60, 1764–1783. [Google Scholar] [CrossRef]
- Angelotti, A.M.; Gibiino, G.P.; Florian, C.; Santarelli, A. Trapping Dynamics in GaN HEMTs for Millimeter-Wave Applications: Measurement-Based Characterization and Technology Comparison. Electronics 2021, 10, 137. [Google Scholar] [CrossRef]
- Zanoni, E.; Rampazzo, F.; De Santi, C.; Gao, Z.; Sharma, C.; Modolo, N.; Verzellesi, G.; Chini, A.; Meneghesso, G.; Meneghini, M. Failure Physics and Reliability of GaN-Based HEMTs for Microwave and Millimeter-Wave Applications: A Review of Consolidated Data and Recent Results. Phys. Status Solidi A 2022, 219, 2100722. [Google Scholar] [CrossRef]
- Jarndal, A.; Kompa, G. A new small signal modelling approach applied to GaN devices. IEEE Trans. Microw. Theory Techn. 2005, 53, 3440–3448. [Google Scholar] [CrossRef]
- Crupi, G.; Xiao, D.; Schreurs, D.M.M.-P.; Limiti, E.; Caddemi, A.; De Raedt, W.; Germain, M. Accurate multibias equivalent circuit extraction for GaN HEMTs. IEEE Trans. Microw. Theory Techn. 2006, 54, 3616–3622. [Google Scholar] [CrossRef]
- Brady, R.G.; Oxley, C.H.; Brazil, T.J. An improved small-signal parameter-extraction algorithm for GaN HEMT devices. IEEE Trans. Microw. Theory Techn. 2008, 56, 1535–1544. [Google Scholar] [CrossRef]
- Zarate-de Landa, A.; Zuniga-Juarez, J.E.; Loo-Yau, J.R.; Reynoso-Hernandez, J.A.; Maya-Sanchez, M.C.; del Valle-Padilla, J.L. Advances in linear modeling of microwave transistors. IEEE Microw. Mag. 2009, 10, 100, 102–111, 146. [Google Scholar] [CrossRef]
- Crupi, G.; Schreurs, D.M.M.-P.; Caddemi, A.; Raffo, A.; Vanaverbeke, F.; Avolio, G.; Vannini, G. De Raedt, W. High-frequency extraction ofthe extrinsic capacitances for GaNHEMT technology. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 445–447. [Google Scholar] [CrossRef]
- Alt, R.; Marti, D.; Bolognesi, C.R. Transistor modeling: Robust small-signal equivalent circuit extraction in various HEMT technologies. IEEE Microw. Mag. 2013, 14, 83–101. [Google Scholar] [CrossRef]
- Crupi, G.; Caddemi, A.; Schreurs, D.M.M.-P.; Dambrine, G. The large world of FET small-signal equivalent circuits. Int. J. RF Microw. Comput. Aided Eng. 2016, 26, 749–762. [Google Scholar] [CrossRef]
- Alim, M.A.; Rezazadeh, A.A.; Gaquiere, C. Temperature effect on DC and equivalent circuit parameters of 0.15-µm gate length GaN/SiC HEMT for microwave applications. IEEE Trans. Microw. Theory Techn. 2016, 64, 3483–3491. [Google Scholar] [CrossRef]
- Crupi, G.; Raffo, A.; Avolio, G.; Schreurs, D.M.M.-P.; Vannini, G.; Caddemi, A. Temperature influence on GaN HEMT equivalent circuit. IEEE Microw. Wirel. Comp. Lett. 2016, 26, 813–815. [Google Scholar] [CrossRef]
- Crupi, G.; Raffo, A.; Vadalà, V.; Vannini, G.; Caddemi, A. High-periphery GaN HEMT modeling up to 65 GHz and 200 °C. Solid-State Electron. 2019, 152, 11–16. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Y.; Luo, Y.; Wang, C.; Wen, Z.; Yan, B.; Xu, R. A reliable and efficient small-signal parameter extraction method for GaN HEMTs. Int. J. Numer. Model. Electron. Netw. Dev. Field 2020, 33, e2540. [Google Scholar] [CrossRef]
- Al Sabbagh, M.; Yagoub, M.C.E.; Park, J. New small-signal extraction method applied to GaN HEMTs on different substrates. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22291. [Google Scholar] [CrossRef]
- Maafri, D.; Saadi, A.A.; Sabbagh, M.A.; Yagoub, M.C.E. A New High-Frequency HEMT GaN Extrinsic Capacitance Extraction Technique. IEEE Microw. Wirel. Comp. Lett. 2022, 32, 305–307. [Google Scholar] [CrossRef]
- Dunleavy, L.; Baylis, C.; Curtice, W.; Connick, R. Modeling GaN: Powerful but challenging. IEEE Microw. Mag. 2010, 11, 82–96. [Google Scholar] [CrossRef]
- Crupi, G.; Vadalà, V.; Colantonio, P.; Cipriani, E.; Caddemi, A.; Vannini, G.; Schreurs, D.M.M.-P. Empowering GaN HEMT models: The gateway for power amplifier design. Int. J. Numer. Model. Electron. Netw. Devices Fields 2015, 30, e2125. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, C.; Sun, H.; Wen, Z.; Wu, Y.; Xu, R.; Yu, X.; Ren, C.; Wang, Z.; Zhang, B.; et al. A Scalable Large-Signal Multiharmonic Model of AlGaN/GaN HEMTs and Its Application in C-Band High Power Amplifier MMIC. IEEE Trans. Microw. Theory Techn. 2017, 65, 2836–2846. [Google Scholar] [CrossRef]
- Raffo, A.; Vadalà, V.; Yamamoto, H.; Kikuchi, K.; Bosi, G.; Ui, N.; Inoue, K.; Vannini, G. A new modeling technique for microwave multicell transistors based on EM simulations. IEEE Trans. Microw. Theory Techn. 2020, 68, 3100–3110. [Google Scholar] [CrossRef]
- Martín-Guerrero, T.M.; Santarelli, A.; Gibiino, G.P.; Traverso, P.A.; Camacho-Peñalosa, C.; Filicori, F. Measurement-Based FET Analytical Modeling Using the Nonlinear Function Sampling Approach. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 1145–1148. [Google Scholar] [CrossRef]
- Lee, S.; Webb, K.J.; Tialk, V.; Eastman, L.F. Intrinsic noise equivalent-circuit parameters for AlGaN/GaN HEMTs. IEEE Trans. Microw. Theory Tech. 2003, 51, 1567–1577. [Google Scholar]
- Rudolph, M.; Doerner, R.; Ngnintendem, E.; Heinrich, W. Noise modeling of GaN HEMT devices. In Proceedings of the European Microwave Integrated Circuits Conference, Amsterdam, The Netherlands, 29–30 October 2012; pp. 159–162. [Google Scholar]
- Crupi, G.; Caddemi, A.; Raffo, A.; Salvo, G.; Nalli, A.; Vannini, G. GaN HEMT noise modeling based on 50-Ω noise factor. Microw. Opt. Technol. Lett. 2015, 57, 937–942. [Google Scholar] [CrossRef]
- Jarndal, A.; Hussein, A.; Crupi, G.; Caddemi, A. Reliable noise modeling of GaN HEMTs for designing low-noise amplifiers. Int. J. Numer. Model. Electron. Netw. Dev. Field 2020, 33, e2585. [Google Scholar] [CrossRef]
- Pace, L.; Colangeli, S.; Ciccognani, W.; Longhi, P.E.; Limiti, E.; Leblanc, R.; Feudale, M.; Vitobello, F. Design and validation of 100 nm GaN-On-Si Ka-band LNA based on custom noise and small signal models. Electronics 2020, 9, 150. [Google Scholar] [CrossRef]
- Marinković, Z.; Crupi, G.; Caddemi, A.; Avolio, G.; Raffo, A.; Marković, V.; Vannini, G.; Schreurs, D.M.M.-P. Neural approach for temperature dependent modeling of GaN HEMTs. Int. J. Numer. Model. 2015, 28, 359–370. [Google Scholar] [CrossRef]
- Khusro, A.; Husain, S.; Hashmi, M.S.; Auyuneur, M.; Ansari, A.Q. A reliable and fast ANN based behavioral modeling approach for GaN HEMT. In Proceedings of the IEEE 16th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Lausanne, Switzerland, 15–18 July 2019; pp. 277–280. [Google Scholar]
- Marinković, Z.; Crupi, G.; Vadalà, V.; Raffo, A.; Caddemi, A.; Marković, V.; Schreurs, D.M.M.-P. Temperature Dependent Small-Signal Neural Modeling of High-Periphery GaN HEMTs. In Proceedings of the 2019 14th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), Nis, Serbia, 23–25 October 2019; pp. 33–36. [Google Scholar]
- Marinkovi´c, Z.; Crupi, G.; Caddemi, A.; Markovic, V.; Schreurs, D.M.M.-P. A review on the artificial neural network applications for small-signal modeling of microwave FETs. Int. J. Numer. Model. Electron. Netw. Dev. Field 2020, 33, e2668. [Google Scholar]
- Khusro, A.; Husain, S.; Hashmi, M.S.; Ansari, A.Q. Small signal behavioral modeling technique of GaN high electron mobility transistor using artificial neural network: An accurate, fast, and reliable approach. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22112. [Google Scholar] [CrossRef]
- Jarndal, A.; Husain, S.; Hashmi, M.S. Genetic algorithm initialized artificial neural network based temperature dependent small-signal modeling technique for GaN high electron mobility transistors. Int. J. RF Microw. Comput. Aided Eng. 2021, 31, e22542. [Google Scholar] [CrossRef]
- Jarndal, A.; Husain, S.; Hashmi, M. On temperature-dependent small-signal modelling of GaN HEMTs using artificial neural networks and support vector regression. IET Microw. Antennas Propag. 2021, 15, 937–953. [Google Scholar]
- Husain, S.; Hashmi, M.; Jarndal, A.; Chaudhary, M.; Nauryzbayev, G. Comparative Analysis of ANN Architectures for the Development of GaN HEMT Small-Signal Model. In Proceedings of the IEEE MTT-S International Microwave and RF Conference (IMARC), Kanpur, India, 17–19 December 2021; pp. 1–4. [Google Scholar]
- Geng, M.; Zhu, Z.; Cai, J. Small-Signal Behavioral Model for GaN HEMTs based on Long-Short Term Memory Networks. In Proceedings of the IEEE MTT-S International Wireless Symposium (IWS), Nanjing, China, 23–26 May 2021; pp. 1–3. [Google Scholar]
- Feng, F.; Na, W.; Jin, J.; Zhang, J.; Zhang, W.; Zhang, Q.-J. Artificial Neural Networks for Microwave Computer-Aided Design: The State of the Art. IEEE Trans. Microw. Theory Techn. 2022, 70, 4597–4619. [Google Scholar] [CrossRef]
- Darwish, A.M.; Huebschman, B.D.; Viveiros, E.; Hung, H.A. Dependence of GaN HEMT millimeter-wave performance on temperature. IEEE Trans. Microw. Theory Techn. 2009, 57, 3205–3211. [Google Scholar] [CrossRef]
- Camarchia, V.; Cappelluti, F.; Pirola, M.; Guerrieri, S.D.; Ghione, G. Self-consistent electrothermal modeling of class A, AB, and B power GaN HEMTs under modulated RF excitation. IEEE Trans. Microw. Theory Techn. 2007, 55, 1824–1831. [Google Scholar] [CrossRef]
- Gryglewski, D.; Wojtasiak, W.; Kamińska, E.; Piotrowska, A. Characterization of Self-Heating Process in GaN-Based HEMTs. Electronics 2020, 9, 1305. [Google Scholar] [CrossRef]
- Li, Y.; Mao, S.; Fu, Y.; Xu, R.; Yan, B.; Zhang, Y.; Xu, Y. A scalable electrothermal model using a three-dimensional thermal analysis model for GaN-on-diamond high-electron-mobility transistors. Int. J. Numer. Model. Electron. Netw. Dev. Field 2021, 34, e2875. [Google Scholar] [CrossRef]
- Alim, M.A.; Chowdhury, A.Z.; Islam, S.; Gaquiere, C.; Crupi, G. Temperature-Sensitivity of Two Microwave HEMT Devices: AlGaAs/GaAs vs. AlGaN/GaN Heterostructures. Electronics 2021, 10, 1115. [Google Scholar] [CrossRef]
- Foundry Process Data Sheet. Ref.: 170112_DS GaN GH25 Process_7012, United Monolithic Semiconductors, Villebon-sur-Yvette, France. Available online: https://www.ums-gaas.com/wp-content/uploads/2017/05/PPH25X.pdf (accessed on 11 March 2023).
- Zhang, Q.J.; Gupta, K.C. Neural Networks for RF and Microwave Design; Artech House: Boston, MA, USA, 2000. [Google Scholar]
- Lu, S.-S.; Meng, C.; Chen, T.-W.; Chen, H.-C. The origin of the kink phenomenon of transistor scattering parameter S22. IEEE Trans. Microw. Theory Tech. 2001, 49, 333–340. [Google Scholar] [CrossRef]
- Crupi, G.; Raffo, A.; Caddemi, A.; Vannini, G. Kink Effect in S22 for GaN and GaAs HEMTs. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 301–303. [Google Scholar] [CrossRef]
- Ahsan, S.A.; Ghosh, S.; Khandelwal, S.; Chauhan, Y.S. Modeling of kink-effect in RF behaviour of GaN HEMTs using ASM-HEMT model. In Proceedings of the IEEE International Conference on Electron Devices and Solid-State Circuits, Hong Kong, China, 3–5 August 2016; pp. 426–429. [Google Scholar]
- Crupi, G.; Raffo, A.; Vadalà, V.; Vannini, G.; Caddemi, A. A new study on the temperature and bias dependence of the kink effects in S22 and h21 for the GaN HEMT technology. Electronics 2018, 7, 353. [Google Scholar] [CrossRef]
- Zhu, Z.; Geng, M.; Cai, J.; Gao, H. Analysis and modeling of the kink effect in S22 based on support vector machine for GaN HEMTs. Int. J. Numer. Model. Electron. Netw. Dev. Field 2022, 35, e2992. [Google Scholar] [CrossRef]
Parameter | ANN Structure |
---|---|
S11 | 2-4-4-2 |
S21 | 2-4-4-2 |
Re (S12) | 2-5-5-1 |
Im (S12) | 2-5-4-1 |
S22 | 2-5-5-2 |
Parameter | GRU Structure |
---|---|
Re (Sij) | 5-1 |
Im (Sij) | 5-1 |
Ta (°C) | Parameter | Equivalent Circuit | ANNs | GRUs |
---|---|---|---|---|
35 | E11 | 45.96% | 1.04% | 1.32% |
E21 | 26.86% | 12.93% | 14.63% | |
E12 | 38.51% | 1.96% | 3.47% | |
E22 | 44.32% | 0.79% | 0.98% | |
ETOT | 38.91% | 4.18% | 5.10% | |
90 | E11 | 43.31% | 1.14% | 1.44% |
E21 | 28.65% | 12.71% | 10.73% | |
E12 | 41.38% | 2.04% | 2.69% | |
E22 | 45.29% | 0.78% | 0.96% | |
ETOT | 39.65% | 4.17% | 3.96% | |
145 | E11 | 38.62% | 2.12% | 2.10% |
E21 | 27.30% | 16.51% | 19.19% | |
E12 | 40.18% | 2.69% | 3.36% | |
E22 | 41.69% | 1.44% | 1.68% | |
ETOT | 36.95% | 5.69% | 6.58% | |
200 | E11 | 35.96% | 1.64% | 1.69% |
E21 | 24.44% | 21.27% | 9.26% | |
E12 | 38.10% | 1.91% | 2.93% | |
E22 | 37.88% | 1.37% | 1.34% | |
ETOT | 34.10% | 6.55% | 3.81% |
Ta (°C) | gm (mS) | Cgg (pF) | fT (GHz) |
---|---|---|---|
35 | 347.9 | 2.560 | 21.63 |
90 | 293.6 | 2.372 | 19.70 |
145 | 249.7 | 2.222 | 17.89 |
200 | 215.4 | 2.130 | 16.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crupi, G.; Latino, M.; Gugliandolo, G.; Marinković, Z.; Cai, J.; Bosi, G.; Raffo, A.; Fazio, E.; Donato, N.
A Comprehensive Overview of the Temperature-Dependent Modeling of the High-Power GaN HEMT Technology Using mm-Wave Scattering Parameter Measurements
. Electronics 2023, 12, 1771.
https://doi.org/10.3390/electronics12081771
Crupi G, Latino M, Gugliandolo G, Marinković Z, Cai J, Bosi G, Raffo A, Fazio E, Donato N.
A Comprehensive Overview of the Temperature-Dependent Modeling of the High-Power GaN HEMT Technology Using mm-Wave Scattering Parameter Measurements
. Electronics. 2023; 12(8):1771.
https://doi.org/10.3390/electronics12081771
Crupi, Giovanni, Mariangela Latino, Giovanni Gugliandolo, Zlatica Marinković, Jialin Cai, Gianni Bosi, Antonio Raffo, Enza Fazio, and Nicola Donato.
2023. "A Comprehensive Overview of the Temperature-Dependent Modeling of the High-Power GaN HEMT Technology Using mm-Wave Scattering Parameter Measurements
" Electronics 12, no. 8: 1771.
https://doi.org/10.3390/electronics12081771
Crupi, G., Latino, M., Gugliandolo, G., Marinković, Z., Cai, J., Bosi, G., Raffo, A., Fazio, E., & Donato, N.
(2023). A Comprehensive Overview of the Temperature-Dependent Modeling of the High-Power GaN HEMT Technology Using mm-Wave Scattering Parameter Measurements
. Electronics, 12(8), 1771.
https://doi.org/10.3390/electronics12081771