MicroFactorsAware Scheduling of Multiple Autonomous Trucks in OpenPit Mining via Enhanced Metaheuristics
Abstract
:1. Introduction
1.1. Related Work and Motivations
1.2. Contributions
1.3. Organization
2. Problem Formulation
2.1. Cost Function Formulation
2.2. Transport Capability Composition
2.3. Energy Consumption Composition
2.4. Time Composition
3. Methodology
3.1. Principle of Solution Vector Encoding
3.2. Scheduling Problem ReFormulation
3.3. ImprovedEvolution Artificial Bee Colony Search Procedure
Algorithm 1. IEABC. 

Algorithm 2. ChargeConstruct 
Input: $X$; Output: ${X}^{\prime}$; 1. Set $i=1$; 2. while $i<{N}_{\mathrm{step}}$ do 3. ${T}_{\mathrm{cruising}}\leftarrow \mathrm{TravelTime}({X}_{i},{X}_{i+1})$; 4. ${E}_{\mathrm{remain}}\leftarrow \mathrm{Energycost}({T}_{\mathrm{cruising}})$; 5. if ${E}_{\mathrm{remain}}<0$ then 6. ${X}_{i}\leftarrow \mathrm{chargespot}$; 7. $X\leftarrow \mathrm{new}X$; 8. ${N}_{\mathrm{step}}\leftarrow \mathrm{new}\text{}{N}_{\mathrm{step}}$; 9. $i\leftarrow 1$; 10. end if 11. end while 12. ${X}^{\prime}\leftarrow X$; 13. return. 
4. Simulation Results and Discussion
4.1. Simulation Setup
4.2. Simulation Results
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
 Tang, J.; Zhao, B.; Yang, C.; Zhou, C.; Chen, S.; Ni, X.; Ai, Y. An Architecture and Key Technologies of Autonomous Truck Dispatching System in Openpit Mines. In Proceedings of the 2022 International Conference on CyberPhysical Social Intelligence (ICCSI), Nanjing, China, 18–21 November 2022; pp. 122–127. [Google Scholar]
 Zhang, B.; Li, D.; Ba, T.; Jiang, D.; Qiu, X.; Wang, T. Obstacle Detection and Tracking of Unmanned Mine Car Based on 3D Lidar. In Proceedings of the 2022 International Conference on CyberPhysical Social Intelligence (ICCSI), Nanjing, China, 18–21 November 2022; pp. 222–228. [Google Scholar]
 Ma, Y.; Wang, Z.; Yang, H.; Yang, L. Artificial intelligence applications in the development of autonomous vehicles: A survey. IEEE/CAA J. Autom. Sin. 2020, 7, 315–329. [Google Scholar] [CrossRef]
 Chen, L.; Hu, X.; Wang, G.; Cao, D.; Li, L.; Wang, F.Y. Parallel Mining Operating Systems: From Digital Twins to Mining Intelligence. In Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), Beijing, China, 15 July–15 August 2021; pp. 469–473. [Google Scholar]
 Moradi Afrapoli, A.; AskariNasab, H. Mining Fleet Management Systems: A Review of Models and Algorithms. Int. J. Min. Reclam. Environ. 2019, 33, 42–60. [Google Scholar] [CrossRef]
 Alarie, S.; Gamache, M. Overview of Solution Strategies Used in Truck Dispatching Systems for Open Pit Mines. Int. J. Surf. Min. Reclam. Environ. 2002, 16, 59–76. [Google Scholar] [CrossRef]
 Li, B.; Zhang, Y.; Shao, Z.; Jia, N. Simultaneous Versus Joint Computing: A Case Study of Multivehicle Parking Motion Planning. J. Comput. Sci. 2017, 20, 30–40. [Google Scholar] [CrossRef]
 Ge, S.; Wang, F.Y.; Yang, J.; Ding, Z.; Wang, X.; Li, Y.; Teng, S.; Liu, Z.; Ai, Y.; Chen, L. Making standards for smart mining operations: Intelligent vehicles for autonomous mining transportation. IEEE Trans. Intell. Veh. 2022, 7, 413–416. [Google Scholar] [CrossRef]
 Gleixner, A. Solving LargeScale Open Pit Mining Production Scheduling Problems by Integer Programming. Ph.D. Thesis, Zuse Institute Berlin (ZIB), Berlin, Germany, 2009. [Google Scholar]
 Li, B.; Yin, Z.; Ouyang, Y.; Zhang, Y.; Zhong, X.; Tang, S. Online Trajectory Replanning for Sudden Environmental Changes During Automated Parking: A Parallel Stitching Method. IEEE Trans. Intell. Veh. 2022, 7, 748–757. [Google Scholar] [CrossRef]
 Tian, F.; Zhou, R.; Li, Z.; Li, L.; Gao, Y.; Cao, D.; Chen, L. Trajectory Planning for Autonomous Mining Trucks Considering Terrain Constraints. IEEE Trans. Intell. Veh. 2021, 6, 772–786. [Google Scholar] [CrossRef]
 Li, B.; Ouyang, Y.; Li, X.; Cao, D.; Zhang, T.; Wang, Y. Mixedinteger and Conditional Trajectory Planning for an Autonomous Mining Truck in Loading/Dumping Scenarios: A Global Optimization Approach. IEEE Trans. Intell. Veh. 2022, 8, 1512–1522. [Google Scholar] [CrossRef]
 Li, B.; Ouyang, Y.; Li, L.; Zhang, Y. Autonomous Driving on Curvy Roads Without Reliance on Frenet Frame: A CartesianBased Trajectory Planning Method. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15729–15741. [Google Scholar] [CrossRef]
 Chen, L.; Xie, J.; Zhang, X.; Deng, J.; Ge, S.; Wang, F.Y. Mining 5.0: Concept and Framework for Intelligent Mining Systems in CPSS. IEEE Trans. Intell. Veh. 2023, 8, 3533–3536. [Google Scholar] [CrossRef]
 Patterson, S.R.; Kozan, E.; Hyland, P. Energy Efficient Scheduling of Openpit Coal Mine Trucks. Eur. J. Oper. Res. 2017, 262, 759–770. [Google Scholar] [CrossRef]
 Zhang, L.; Shan, W.; Zhou, B.; Yu, B. A Dynamic Dispatching Problem for Autonomous Mine Trucks in Openpit Mines Considering Endogenous Congestion. Transp. Res. Part C Emerg. Technol. 2023, 150, 104080. [Google Scholar] [CrossRef]
 Yuan, W.; Li, D.; Jiang, D.; Jia, Y.; Liu, Z.; Bian, W. Research on RealTime Truck Dispatching Model in Openpit Mine Based on Improved Genetic Algorithm. In Proceedings of the 2022 International Conference on CyberPhysical Social Intelligence (ICCSI), Nanjing, China, 18–21 November 2022; pp. 234–239. [Google Scholar]
 Wang, Z.; Wang, J.; Zhao, M.; Guo, Q.; Zeng, X.; Xin, F.; Zhou, H. Truck Dispatching Optimization Model and Algorithm Based on 01 Decision Variables. Math. Probl. Eng. 2022, 2022, 5887672. [Google Scholar] [CrossRef]
 Bastos, G.S.; Souza, L.E.; Ramos, F.T.; Ribeiro, C.H. A Singledependent Agent Approach for Stochastic Timedependent Truck Dispatching in Openpit Mining. In Proceedings of the 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011; pp. 1057–1062. [Google Scholar]
 Zhang, X.; Chen, L.; Ai, Y.; Tian, B.; Cao, D.; Li, L. Scheduling of Autonomous Mining Trucks: Allocation Model Based Tabu Search Algorithm Development. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 982–989. [Google Scholar]
 Bao, H.; Zhang, R. Study on Optimization of Coal Truck Flow in Openpit Mine. Adv. Civil Eng. 2020, 2020, 8848140. [Google Scholar] [CrossRef]
 Wang, Y.; Liu, W.; Wang, C.; Fadzil, F.; Lauria, S.; Liu, X. A Novel MultiObjective Optimization Approach with Flexible Operation Planning Strategy for Truck Scheduling. IJNDI 2023, 2, 100002. [Google Scholar] [CrossRef]
 Zhang, S.; Lu, C.; Jiang, S.; Shan, L.; Xiong, N.N. An Unmanned Intelligent Transportation Scheduling System for OpenPit Mine Vehicles Based on 5G and Big Data. IEEE Access 2020, 8, 135524–135539. [Google Scholar] [CrossRef]
 Ahumada, G.I.; Herzog, O. Application of Multiagent System and Tabu Search for Truck Dispatching in Openpit Mines. ICAART 2021, 1, 160–170. [Google Scholar]
 Chang, Y.; Ren, H.; Wang, S. Modelling and Optimizing an Openpit Truck Scheduling Problem. Discrete Dyn. Nat. Soc. 2015, 2015, 745378. [Google Scholar] [CrossRef]
 Afrapoli, A.M.; Tabesh, M.; AskariNasab, H. A Multiple Objective Transportation Problem Approach to Dynamic Truck Dispatching in Surface Mines. Eur. J. Oper. Res. 2019, 276, 331–342. [Google Scholar] [CrossRef]
 Zhang, X.; Guo, A.; Ai, Y.; Tian, B.; Chen, L. RealTime Scheduling of Autonomous Mining Trucks via Flow AllocationAccelerated Tabu Search. IEEE Trans. Intell. Veh. 2022, 7, 466–479. [Google Scholar] [CrossRef]
 Smith, A.; Linderoth, J.; Luedtke, J. Optimizationbased Dispatching Policies for Openpit Mining. Optim. Eng. 2021, 22, 1347–1387. [Google Scholar] [CrossRef]
 Zeng, W.; Baafi, E.Y.; Fan, H. A Simulation Model to Study Truckallocation Options. J. S. Afr. Inst. Min. Metall. 2022, 122, 741–750. [Google Scholar] [CrossRef] [PubMed]
 de Melo, W.B. Optimization of truck allocation in open pit mines using differential evolution algorithm. Int. J. Innov. Res. 2021, 9, 338–350. [Google Scholar] [CrossRef]
 Yeganejou, M.; Badiozamani, M.; MoradiAfrapoli, A.; AskariNasab, H. Integration of Simulation and Dispatch Modelling to Predict Fleet Productivity: An Openpit Mining Case. Min. Technol. 2022, 131, 67–79. [Google Scholar]
 Li, N.; Zhang, J.; Zhang, S.; Hou, X.; Liu, Y. The Influence of Accessory Energy Consumption on Evaluation Method of Braking Energy Recovery Contribution Rate. Energy Convers. Manag. 2018, 166, 545–555. [Google Scholar] [CrossRef]
 Liu, T.; Zou, Y.; Liu, D. Energy Management for Battery Electric Vehicle with Automated Mechanical Transmission. Int. J. Veh. Des. 2016, 70, 98–112. [Google Scholar] [CrossRef]
 Li, B.; Tang, S.; Zhang, Y.; Zhong, X. OcclusionAware Path Planning to Promote Infrared Positioning Accuracy for Autonomous Driving in a Warehouse. Electronics 2021, 10, 3093. [Google Scholar] [CrossRef]
Parameter  Description  Setting 

${\mathrm{N}}_{\mathrm{truck}}$  Number of unmanned dump trucks  4 
${\mathrm{N}}_{\mathrm{step}}$  Number of tasks to be completed per unmanned dump truck  20 
${\mathrm{N}}_{\mathrm{loading}\_\mathrm{spots}}$  Number of loading spot  2 
${\mathrm{N}}_{\mathrm{unloading}\_\mathrm{spots}}$  Number of unloading spot  3 
${\mathrm{w}}_{1}$, ${\mathrm{w}}_{2}$, ${\mathrm{w}}_{3}$  Weight coefficient in Equation (1)  100, 2.7 × 10^{−7}, 0.01 
${\mathrm{w}}_{4}$, ${\mathrm{w}}_{5}$  Weight coefficient in Equation (4)  0.925, 430 
${\mathrm{w}}_{6}$  Weight coefficient in Equation (5)  4000 
${\mathrm{C}}_{\mathrm{i}}$  The load capacity of unmanned dump truck i  1 t, 2 t 
${{\displaystyle \mathrm{v}}}_{\mathrm{i}}$  The average speed of unmanned dump truck i during cruising  10 m/s, 15 m/s 
${\mathrm{T}}_{\mathrm{load}\_\mathrm{p}}$  Loading time of unmanned dump truck i at loading spot  10 s, 20 s 
${\mathrm{T}}_{\mathrm{unload}\_\mathrm{p}}$  Unloading time of unmanned dump truck i at unloading spot  10 s, 20 s 
${\mathrm{E}}_{\mathrm{full}}$  Full electric quantity of unmanned dump truck i  0.25 kWh 
$\mathrm{q}$  Charging efficiency  3 × 10^{4} J/s 
${\mathrm{w}}_{7}$, ${\mathrm{w}}_{8}$  Weight coefficient in Equation (14)  1, 0.0001 
Algorithm  Cost  Consumed Energy (J)  Time (s) 

IEABC  10.31  8.93 × 10^{6}  620.0 
ABC  10.43  9.18 × 10^{6}  624.9 
Cost Function Definition Strategy  Cost  Consumed Energy (10^{6} J)  Time (s) 

Regardedtime Strategy  10.31  8.93  620.0 
Disregardedtime Strategy  10.63  9.00  652.9 
Encoding Strategy  Cost  Consumed Energy (10^{6} J)  Time (s) 

Proposed Encoding  10.31  8.93  620.0 
Binary Encoding  10.61  9.07  636.2 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Peng, X. MicroFactorsAware Scheduling of Multiple Autonomous Trucks in OpenPit Mining via Enhanced Metaheuristics. Electronics 2023, 12, 3793. https://doi.org/10.3390/electronics12183793
Fang Y, Peng X. MicroFactorsAware Scheduling of Multiple Autonomous Trucks in OpenPit Mining via Enhanced Metaheuristics. Electronics. 2023; 12(18):3793. https://doi.org/10.3390/electronics12183793
Chicago/Turabian StyleFang, Yong, and Xiaoyan Peng. 2023. "MicroFactorsAware Scheduling of Multiple Autonomous Trucks in OpenPit Mining via Enhanced Metaheuristics" Electronics 12, no. 18: 3793. https://doi.org/10.3390/electronics12183793