A Miniaturized FSS-Based Eight-Element MIMO Antenna Array for Off/On-Body WBAN Telemetry Applications
Abstract
:1. Introduction
- An eight-element MIMO antenna having wider bandwidth is proposed for off/on-body (OB) WBANs.
- This antenna system maintains a wideband response of 7600 MHz and 7500 MHz for off- and on-body communication scenarios respectively.
- Antennas in side-by-side (ant. 2,3; ant 4,5; ant. 6,7; ant. 8,1) orthogonal (ant. 1,2; ant. 3,4, ant. 5,6; ant. 7,8), and across (ant. 2,7; ant 3,6) arrangements of the proposed eight-element MIMO enable achieving higher data rates without significant losses.
- The mutual coupling effect is reduced by at least 20 dB by incorporating two distinct isolation structures featuring an FSS-based Jerusalem cross (JC) and meandered structure (MS) for orthogonally and side-by-side/across placed antennas, respectively.
- The MIMO performance and SAR at 3.5 GHz and 5 GHz are also investigated to confirm its suitability for on-body WBAN telemetry communications.
- -
- Wideband antenna design with several bandwidth enhancement techniques.
- -
- Increased number of ports in three possible configurations for high-date-rate MIMO operations.
- -
- Wide fractional bandwidth for off/on-body scenarios.
- -
- Single-layered planar configuration for biotelemetry devices.
- -
- Periodic structure-based distinct isolation mechanism for all configurations.
- -
- Low-cost fabrication and low-profile laminate along with good agreement between simulations and measurements while maintaining an efficient off- and on-body performance.
- -
- Safe for on-body usage with acceptable gain and efficiency.
2. Design Methodology and Configuration
2.1. MIMO Antenna Pair
2.2. Decoupling of MIMO Antenna Pair
2.3. Design and Analysis of FSS-Based JC
3. Simulation and Measurements
3.1. S-Parameters
3.2. Surface Current Distributions
3.3. Radiation Characteristics
3.4. Diversity Performance
3.5. On-Body SAR Analysis
4. Comparison with Existing Literature
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hall, P.S.; Hao, Y. Antennas and Propagation for Body-Centric Wireless Communications; Artech House: London, UK, 2012. [Google Scholar]
- Pellegrini, A. Antennas and propagation for body-centric wireless communications at millimeter-wave frequencies: A review [wireless corner]. IEEE Antennas Propag. Mag. 2013, 55, 262–287. [Google Scholar] [CrossRef]
- Mahmood, S.N.; Ishak, A.J.; Ismail, A.; Soh, A.C.; Zakaria, Z.; Alani, S. ON-OFF Body Ultra-wideband (UWB) Antenna for Wireless Body Area Networks (WBAN): A Review. IEEE Access 2020, 8, 150844–150863. [Google Scholar] [CrossRef]
- Khajeh-Khalili, F. A broadband all-textile wearable MIMO antenna for wireless telecommunication/medical applications. J. Text. Inst. 2021, 112, 2013–2020. [Google Scholar] [CrossRef]
- Jeong, W.; Tak, J.; Choi, J. A low-profile IR-UWB antenna with ring patch for WBAN applications. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1447–1450. [Google Scholar] [CrossRef]
- Li, E.; Li, X.J.; Seet, B.-C. A Triband Slot Patch Antenna for Conformal and Wearable Applications. Electronics 2021, 10, 3155. [Google Scholar] [CrossRef]
- Smith, D.B.; Miniutti, D.; Lamahewa, T.A.; Hanlen, L.W. Propagation models for body-area networks: A survey and new outlook. IEEE Antennas Propag. Mag. 2013, 55, 97–117. [Google Scholar] [CrossRef]
- Mahmood, S.N.; Ishak, A.J.; Jalal, A.; Saeidi, T.; Shafie, S.; Soh, A.C.; Imran, M.A.; Abbasi, Q.H. A Bra Monitoring System Using a Miniaturized Wearable Ultra-Wideband MIMO Antenna for Breast Cancer Imaging. Electronics 2021, 10, 2563. [Google Scholar] [CrossRef]
- See, T.S.; Chen, Z.N.; Qing, X.M. Proximity effect of UWB antenna on human body. In Proceedings of the Asia Pacific Microwave Conference 2009, Singapore, 7–10 December 2009; pp. 2192–2195. [Google Scholar]
- See, T.S.; Chen, Z.N. Experimental characterization of UWB antennas for on-body communications. IEEE Trans. Antennas Propag. 2009, 57, 866–874. [Google Scholar] [CrossRef]
- Zu, H.; Wu, B.; Yang, P.; Li, W.; Liu, J. Wideband and High-Gain Wearable Antenna Array with Specific Absorption Rate Suppression. Electronics 2021, 10, 2056. [Google Scholar] [CrossRef]
- Iqbal, A.; Smida, A.; Alazemi, A.J.; Waly, M.I.; Mallat, N.K.; Kim, S. Wideband circularly polarized MIMO antenna for high data wearable biotelemetric devices. IEEE Access 2020, 8, 17935–17944. [Google Scholar] [CrossRef]
- Yang, D.; Hu, J.; Liu, S. A low profile UWB antenna for WBAN applications. IEEE Access 2018, 6, 25214–25219. [Google Scholar] [CrossRef]
- Sambandam, P. Compact monopole antenna backed with fork slotted EBG for wearable applications. IEEE Antennas Wirel. Propag. Lett. 2019, 19, 228–232. [Google Scholar] [CrossRef]
- Särestöniemi, M.; Pomalaza-Ráez, C.; Kissi, C.; Berg, M.; Hämäläinen, M.; Iinatti, J. WBAN channel characteristics between capsule endoscope and receiving directive UWB on-body antennas. IEEE Access 2020, 8, 55953–55968. [Google Scholar] [CrossRef]
- Le, T.T.; Kim, Y.D.; Yun, T.Y. A Triple-Band Dual-Open-Ring High-Gain High-Efficiency Antenna for Wearable Applications. IEEE Access 2021, 9, 118435–118442. [Google Scholar] [CrossRef]
- Smida, A.; Iqbal, A.; Alazemi, A.J.; Waly, M.I.; Ghayoula, R.; Kim, S. Wideband wearable antenna for biomedical telemetry applications. IEEE Access 2020, 8, 15687–15694. [Google Scholar] [CrossRef]
- Gupta, A.; Kansal, A.; Chawla, P. Design and performance analysis of L-shaped ground and radiator antenna with a metallic reflector for WBAN. Int. J. Electron. 2021, 108, 623–635. [Google Scholar] [CrossRef]
- Le, T.T.; Yun, T.Y. Miniaturization of a dual-band wearable antenna for WBAN applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1452–1456. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Wu, S.; Huang, S.; Liu, C.; Wu, X. A Dual-band Monopole Antenna with EBG for Wearable Wireless Body Area Networks. Appl. Comput. Electromagn. Soc. J. 2021, 36, 48–54. [Google Scholar] [CrossRef]
- Kanagasabai, M.; Sambandam, P.; Alsath, M.G.N.; Palaniswamy, S.; Ravichandran, A.; Girinathan, C. Miniaturized Circularly Polarized UWB Antenna for Body Centric Communication. IEEE Trans. Antennas Propag. 2021, 70, 189–196. [Google Scholar] [CrossRef]
- Kumar, S. Wideband Circularly Polarized Textile MIMO Antenna for Wearable Applications. IEEE Access 2021, 9, 108601–108613. [Google Scholar] [CrossRef]
- Jiang, Z. Wideband Loop Antenna with Split-Ring Resonators for Wireless Medical Telemetry. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1415–1419. [Google Scholar] [CrossRef]
- Agarwal, P.; Deniz, S.; Jain, S.; Alderremy, A.A.; Aly, S. A new analysis of a partial differential equation arising in biology and population genetics via semi analytical techniques. Phys. A Stat. Mech. Its Appl. 2020, 54, 122769. [Google Scholar] [CrossRef]
- Singh, K. Design of rectangular microstrip patch antenna based on Artificial Neural Network algorithm. In Proceedings of the 2nd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 19–20 February 2015. [Google Scholar]
- Goudah, M.; Yousef, M.Y. Bandwidth Enhancement Techniques Comparison for Ultra Wideband Microstrip Antennas for Wireless Application. J. Theor. Appl. Inf. Technol. 2012, 35, 184–193. [Google Scholar]
- Hammerstad, E.; Jensen, O. Accurate models for microstrip computer-aided design. In Proceedings of the 1980 IEEE MTT-S International Microwave Symposium Digest, Washington, DC, USA, 28–30 May 1980; pp. 407–409. [Google Scholar] [CrossRef]
- Munk, B.A. Frequency Selective Surfaces: Theory and Design; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Shakir, S. A Compact 8-Element 3D UWB Diversity Antenna System for Off Device Installation. IEEE Access 2021, 9, 44117–44127. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; Wu, Q.; Yin, Y. A metasurface-based low-profile array decoupling technology to enhance isolation in MIMO antenna systems. IEEE Access 2020, 8, 125565–125575. [Google Scholar] [CrossRef]
- Shin, H.; Lee, J.H. Capacity of multiple-antenna fading channels: Spatial fading correlation, double scattering, and keyhole. IEEE Trans. Inf. Theory 2003, 49, 2636–2647. [Google Scholar] [CrossRef] [Green Version]
- Jaglan, N.; Gupta, S.D. Design and analysis of performance enhanced microstrip patch antenna with EBG substrate. Int. J. Microw. Opt. Technol. 2015, 10, 79–88. [Google Scholar]
- Bait-Suwailam, M.M.; Boybay, M.S.; Ramahi, O.M. Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications. IEEE Trans. Antennas Propag. 2010, 58, 2894–2902. [Google Scholar] [CrossRef]
- Glazunov, A.A.; Molisch, A.F.; Tufvesson, F. Mean effective gain of antennas in a wireless channel. IET Microw. Antennas Propag. 2009, 3, 214–227. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.K.; Chakraborty, U. Compact wearable MIMO antenna with improved port isolation for ultra-wideband applications. IET Microw. Antennas Propag. 2019, 13, 498504. [Google Scholar]
- Zhang, J.; Yan, S.; Hu, X.; Vandenbosch, G.A.E. Mutual Coupling Suppression for On-Body Multiantenna Systems. IEEE Trans. Electromagn. Compat. 2020, 62, 1045–1054. [Google Scholar] [CrossRef]
- Wang, B.; Yan, S. Design of Smartwatch Integrated Antenna with Polarization Diversity. IEEE Access 2020, 8, 123440–123448. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Ban, Y.L.; Nie, Z.; Sim, C.Y.D. Dual-Loop Antenna for 4G LTE MIMO Smart Glasses Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1818–1822. [Google Scholar] [CrossRef]
- Elfergani, I.; Iqbal, A.; Zebiri, C.; Basir, A.; Rodriguez, J.; Sajedin, M.; Pereira, A.D.; Mshwat, W.; Alhameed, R.A.; Ullah, S. Low-Profile and Closely Spaced Four-Element MIMO Antenna for Wireless Body Area Networks. Electronics 2020, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Wang, X.; Jin, G.Y. A Compact Tri-Band Flexible MIMO Antenna Based on Liquid Crystal Polymer for Wearable Applications. Prog. Electromagn. Res. 2021, 102, 217–232. [Google Scholar] [CrossRef]
- Zhang, K.; Jiang, Z.H.; Hong, W.; Werner, D.H. A Low-Profile and Wideband Triple-Mode Antenna for Wireless Body Area Network Concurrent On-/Off-Body Communications. IEEE Trans. Antennas Propag. 2020, 68, 1982–1994. [Google Scholar] [CrossRef]
- Chung, M.-A.; Hsiao, C.-W.; Yang, C.-W.; Chuang, B.-R. 4 × 4 MIMO Antenna System for Smart Eyewear in Wi-Fi 5G and Wi-Fi 6e Wireless Communication Applications. Electronics 2021, 10, 2936. [Google Scholar] [CrossRef]
- Dey, A.B.; Pattanayak, S.S.; Mitra, D.; Arif, W. Investigation and design of enhanced decoupled UWB MIMO antenna for wearable applications. Microw. Opt. Technol. Lett. 2021, 63, 845–861. [Google Scholar] [CrossRef]
- Soumendu, G.; Sourav, R.; Ujjal, C.; Abhishek, S. An ELC meta-resonator inspired wideband wearable MIMO antenna system for biotelemetry applications. J. Electromagn. Waves Appl. 2021, 1–17. [Google Scholar] [CrossRef]
Structures | Variables | Range (mm) | Opt. Dimension (mm) | Impedance Bandwidth at Opt. Dimension (GHz) | |
---|---|---|---|---|---|
Match | Mismatch | ||||
Radiator | W1 | 1.8–2.5 | 2.2 | 6–10.6 | 3–6 |
W2 | 2.3–3 | 2.7 | 6–10.6 | 3–6 | |
L1 | 0.5–1.5 | 1 | 5–10.6 | 3–5 | |
L2 | 1–3 | 2.7 | 5–10.6 | 3–5 | |
L3 | 7.5–8.5 | 8.1 | 4–8.5 | 3–4, 8.5–10.6 | |
r1 | 4.5–5.5 | 5.4 | 4–8.5 | 3–4, 8.5–10.6 | |
r3 | 8–10 | 9.9 | 5–10.6 | 3–5 | |
r6 | 8.5–10 | 9.7 | 5–10.6 | 3–5 | |
r4 | 1.5–3.5 | 2.2 | 4–9 | 3–4, 9–10.6 | |
r5 | 2–4 | 3 | 3.8–9 | 3–3.8, 9–10.6 | |
W5 | 1–2 | 1.8 | 3.8–9 | 3–3.8, 9–10.6 | |
W7 | 1–3 | 2 | 3.6–9.3 | 3–3.6, 9.3–10.6 | |
W6 | 1.5–3.5 | 2.5 | 3.3–10 | 3–3.3, 10–10.6 | |
L6 | 0.8–1 | 0.9 | 3.3–10 | 3–3.3, 10–10.6 | |
Ground | L7 | 1–1.5 | 1.2 | 3–10.6 | - |
JC | L5 | 7.5–8.5 | 8.1 | 3–5, 7–10.6 | 5–7 |
W4 | 0.1–0.5 | 0.35 | 3–5, 7–10.6 | 5–7 | |
g1 | 6.5–8.5 | 7.6 | 3–6, 6.5–10.6 | 6–6.5 | |
g2 | 6.5–8 | 7.4 | 3–10.6 | - | |
MS | L4 | 0.3–5.5 | 0.45 | 3–9.5 | 9.5–10.6 |
W3 | 2–3 | 2.7 | 3–10 | 10–10.6 | |
r2 | 3.5–5 | 4.4 | 3–10.6 | - |
Ref. | Size (mm) | No. of Ports | FBW Off-Body | FBW On-Body | ECC (abs) | CCL | TARC | DG |
---|---|---|---|---|---|---|---|---|
[12] | 40 × 40 | 4 | 92 | 91 | <0.23 | 0.13 | - | <9.7 |
[21] | 20 radii | 6 | 13 | 13 | <0.06 | - | - | - |
[35] | 35 × 55 | 2 | 127 | - | <0.02 | 0.13 | - | >9.9 |
[36] | 150 × 85 | 2 | 3.3 | 3.2 | 0.05 | - | - | - |
[37] | 19 radii | 2 | 27 | 30 | 0.13 | - | - | - |
[38] | 55 × 40 | 2 | 45 | 46 | 0.02 | <9.7 | - | - |
[39] | 26 × 26 | 4 | 58 | 33 | 0.02 | 0.3 | - | 9.91 |
[40] | 59 × 29 | 2 | - | - | 0.05 | - | - | 9.95 |
[41] | 15.5 radii | 3 | 40 | 40 | <0.01 | - | - | - |
[42] | 9 × 50 | 4 | 27 | 26 | <0.025 | - | - | - |
[43] | 5 × 35 | 2 | 153.5 | 152 | 0.039 | 0.4 | −10 | 9.9 |
[44] | 48 × 90 | 2 | 122 | 120 | 0.1 | - | - | 9.9 |
This work | 45 × 45 | 8 | 111 | 110 | <0.17 | <0.4 | <−13 | 9.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilal, M.; Shahid, S.; Khan, Y.; Rauf, Z.; Wagan, R.A.; Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. A Miniaturized FSS-Based Eight-Element MIMO Antenna Array for Off/On-Body WBAN Telemetry Applications. Electronics 2022, 11, 522. https://doi.org/10.3390/electronics11040522
Bilal M, Shahid S, Khan Y, Rauf Z, Wagan RA, Butt MA, Khonina SN, Kazanskiy NL. A Miniaturized FSS-Based Eight-Element MIMO Antenna Array for Off/On-Body WBAN Telemetry Applications. Electronics. 2022; 11(4):522. https://doi.org/10.3390/electronics11040522
Chicago/Turabian StyleBilal, Muhammad, Sara Shahid, Yousuf Khan, Zahid Rauf, Raja A. Wagan, Muhammad A. Butt, Svetlana N. Khonina, and Nikolay L. Kazanskiy. 2022. "A Miniaturized FSS-Based Eight-Element MIMO Antenna Array for Off/On-Body WBAN Telemetry Applications" Electronics 11, no. 4: 522. https://doi.org/10.3390/electronics11040522
APA StyleBilal, M., Shahid, S., Khan, Y., Rauf, Z., Wagan, R. A., Butt, M. A., Khonina, S. N., & Kazanskiy, N. L. (2022). A Miniaturized FSS-Based Eight-Element MIMO Antenna Array for Off/On-Body WBAN Telemetry Applications. Electronics, 11(4), 522. https://doi.org/10.3390/electronics11040522