A Federated Learning Framework for Breast Cancer Histopathological Image Classification
Abstract
1. Introduction
2. Related Work
2.1. Breast Cancer Diagnosis
2.2. Federated Learning
3. Federated Learning Framework
3.1. Overview
3.2. Workflow
3.3. Robustness
4. Experiments
4.1. Data
4.2. Models
4.2.1. ResNet-152
4.2.2. DenseNet-201
4.2.3. MobileNet-v2-100
4.2.4. EfficientNet-b7
4.3. Metrics
4.3.1. ACC_IL
4.3.2. ACC_PL
4.3.3. F1
4.3.4. DOR
4.3.5. Kappa
4.4. Implementation
4.5. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Greenspan, H.; Van Ginneken, B.; Summers, R.M. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 2016, 35, 1153–1159. [Google Scholar] [CrossRef]
- Shin, H.C.; Roberts, K.; Lu, L.; Demner-Fushman, D.; Yao, J.; Summers, R.M. Learning to read chest x-rays: Recurrent neural cascade model for automated image annotation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2497–2506. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Xie, J.; Liu, R.; Luttrell, J.; Zhang, C. Deep Learning Based Analysis of Histopathological Images of Breast Cancer. Front. Genet. 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Ojansivu, V.; Heikkilä, J. Blur Insensitive Texture Classification Using Local Phase Quantization. In Proceedings of the Image and Signal Processing—3rd International Conference, ICISP 2008, Cherbourg-Octeville, France, 1–3 July 2008. [Google Scholar]
- Guo, Z.; Zhang, L.; Zhang, D. A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 2010, 19, 1657–1663. [Google Scholar]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 84–90. [Google Scholar] [CrossRef]
- Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. Breast cancer histopathological image classification using convolutional neural networks. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 2560–2567. [Google Scholar]
- Bayramoglu, N.; Kannala, J.; Heikkilä, J. Deep learning for magnification independent breast cancer histopathology image classification. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancún, Mexico, 4–6 December 2016; pp. 2440–2445. [Google Scholar]
- Abdullah-Al, N.; Ali, M.M.; Kong, Y. Histopathological Breast Cancer Image Classification by Deep Neural Network Techniques Guided by Local Clustering. Biomed Res. Int. 2018, 2018, 2362108. [Google Scholar]
- Zhu, C.; Song, F.; Wang, Y.; Dong, H.; Liu, J. Breast cancer histopathology image classification through assembling multiple compact CNNs. BMC Med. Inform. Decis. Mak. 2019, 19, 198. [Google Scholar] [CrossRef]
- Zaalouk, A.M.; Ebrahim, G.A.; Mohamed, H.K.; Hassan, H.M.; Zaalouk, M.M. A deep learning computer-aided diagnosis approach for breast cancer. Bioengineering 2022, 9, 391. [Google Scholar] [CrossRef]
- Hameed, Z.; Zahia, S.; Garcia-Zapirain, B.; Javier Aguirre, J.; María Vanegas, A. Breast cancer histopathology image classification using an ensemble of deep learning models. Sensors 2020, 20, 4373. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, C.; Zhou, X.; Chen, H.; Xu, H.; Li, Y.; Zhang, H.; Li, X.; Sun, H.; Huang, X.; et al. Application of Transfer Learning and Ensemble Learning in Image-level Classification for Breast Histopathology. arXiv 2022, arXiv:2204.08311. [Google Scholar] [CrossRef]
- Desai, M.; Shah, M. An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN). Clin. eHealth 2021, 4, 1–11. [Google Scholar] [CrossRef]
- Mridha, M.F.; Hamid, M.A.; Monowar, M.M.; Keya, A.J.; Ohi, A.Q.; Islam, M.R.; Kim, J.M. A comprehensive survey on deep-learning-based breast cancer diagnosis. Cancers 2021, 13, 6116. [Google Scholar] [CrossRef]
- Lu, M.Y.; Chen, R.J.; Kong, D.; Lipkova, J.; Singh, R.; Williamson, D.F.; Chen, T.Y.; Mahmood, F. Federated learning for computational pathology on gigapixel whole slide images. Med. Image Anal. 2022, 76, 102298. [Google Scholar] [CrossRef]
- Scheibner, J.; Ienca, M.; Kechagia, S.; Troncoso-Pastoriza, J.R.; Raisaro, J.L.; Hubaux, J.P.; Fellay, J.; Vayena, E. Data protection and ethics requirements for multisite research with health data: A comparative examination of legislative governance frameworks and the role of data protection technologies. J. Law Biosci. 2020, 7, lsaa010. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 2019, 10, 1–19. [Google Scholar] [CrossRef]
- Damgård, I.; Pastro, V.; Smart, N.P.; Zakarias, S. Multiparty Computation from Somewhat Homomorphic Encryption. IACR Cryptol. EPrint Arch. 2011, 2011, 535. [Google Scholar]
- Mohassel, P.; Zhang, Y. SecureML: A System for Scalable Privacy-Preserving Machine Learning. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 19–38. [Google Scholar]
- Kilbertus, N.; Gascón, A.; Kusner, M.; Veale, M.; Gummadi, K.; Weller, A. Blind justice: Fairness with encrypted sensitive attributes. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2630–2639. [Google Scholar]
- Dwork, C.; Roth, A. The Algorithmic Foundations of Differential Privacy. Found. Trends Theor. Comput. Sci. 2014, 9, 211–407. [Google Scholar] [CrossRef]
- Abadi, M.; Chu, A.; Goodfellow, I.J.; McMahan, H.B.; Mironov, I.; Talwar, K.; Zhang, L. Deep Learning with Differential Privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 308–318. [Google Scholar]
- McMahan, H.B.; Ramage, D.; Talwar, K.; Zhang, L. Learning Differentially Private Language Models without Losing Accuracy. arXiv 2017, arXiv:1710.06963. [Google Scholar]
- Stenkvist, B.; Westman-Naeser, S.; Holmquist, J.; Nordin, B.; Fox, C.H. Computerized nuclear morphometry as an objective method for characterizing human cancer cell populations. Cancer Res. 1979, 38, 4688–4697. [Google Scholar]
- Kowal, M.; Filipczuk, P.; Obuchowicz, A.; Korbicz, J.; Monczak, R. Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images. Comput. Biol. Med. 2013, 43, 1563–1572. [Google Scholar] [CrossRef]
- Filipczuk, P.; Fevens, T.; Krzyzak, A.; Monczak, R. Computer-Aided Breast Cancer Diagnosis Based on the Analysis of Cytological Images of Fine Needle Biopsies. IEEE Trans. Med. Imaging 2013, 32, 2169–2178. [Google Scholar] [CrossRef]
- George, Y.; Zayed, H.; Roushdy, M.; Elbagoury, B. Remote Computer-Aided Breast Cancer Detection and Diagnosis System Based on Cytological Images. IEEE Syst. J. 2013, 8, 949–964. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Coenen, F.; Lu, W. Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles. Mach. Vis. Appl. 2013, 24, 1405–1420. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Coenen, F.; Xiao, J.; Lu, W. Erratum to: One-class kernel subspace ensemble for medical image classification. J. Adv. Signal Process. 2015, 88. [Google Scholar] [CrossRef]
- Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 2015, 63, 1455–1462. [Google Scholar] [CrossRef]
- Nikolaenko, V.; Weinsberg, U.; Ioannidis, S.; Joye, M.; Boneh, D.; Taft, N. Privacy-preserving ridge regression on hundreds of millions of records. In Proceedings of the 2013 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 19–22 May 2013; pp. 334–348. [Google Scholar]
- Zhao, L.; Ni, L.; Hu, S.; Chen, Y.; Zhou, P.; Xiao, F.; Wu, L. Inprivate digging: Enabling tree-based distributed data mining with differential privacy. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications, Honolulu, HI, USA, 15–19 April 2018; pp. 2087–2095. [Google Scholar]
- Cheng, K.; Fan, T.; Jin, Y.; Liu, Y.; Chen, T.; Papadopoulos, D.; Yang, Q. Secureboost: A lossless federated learning framework. IEEE Intell. Syst. 2021, 36, 87–98. [Google Scholar] [CrossRef]
- Li, Q.; Wen, Z.; He, B. Practical federated gradient boosting decision trees. In Proceedings of the AAAI conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 4642–4649. [Google Scholar]
- Konečnỳ, J.; McMahan, H.B.; Ramage, D.; Richtárik, P. Federated optimization: Distributed machine learning for on-device intelligence. arXiv 2016, arXiv:1610.02527. [Google Scholar]
- Konečnỳ, J.; McMahan, H.B.; Yu, F.X.; Richtárik, P.; Suresh, A.T.; Bacon, D. Federated learning: Strategies for improving communication efficiency. arXiv 2016, arXiv:1610.05492. [Google Scholar]
- Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Ingerman, A.; Ivanov, V.; Kiddon, C.; Konečnỳ, J.; Mazzocchi, S.; McMahan, B.; et al. Towards federated learning at scale: System design. Proc. Mach. Learn. Syst. 2019, 1, 374–388. [Google Scholar]
- Yu, H.; Liu, Z.; Liu, Y.; Chen, T.; Cong, M.; Weng, X.; Niyato, D.; Yang, Q. A sustainable incentive scheme for federated learning. IEEE Intell. Syst. 2020, 35, 58–69. [Google Scholar] [CrossRef]
- Zhang, C.; Li, S.; Xia, J.; Wang, W.; Yan, F.; Liu, Y. BatchCrypt: Efficient homomorphic encryption for Cross-Silo federated learning. In Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC 20), online, 15–17 July 2020; pp. 493–506. [Google Scholar]
- Standard, N.F. Announcing the advanced encryption standard (aes). Fed. Inf. Process. Stand. Publ. 2001, 197, 3. [Google Scholar]
- Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic encryption for arithmetic of approximate numbers. In Proceedings of the International Conference on the Theory and Application of Cryptology and Information Security, Hong Kong, China, 3–7 December 2017; pp. 409–437. [Google Scholar]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 20–22 April 2017; pp. 1273–1282. [Google Scholar]
- Hirsch, P.D. Task Scheduling Using Improved Weighted Round Robin Techniques. U.S. Patent 10,324,755, 18 June 2019. [Google Scholar]
- Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster computing with working sets. HotCloud 2010, 10, 95. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017; pp. 4700–4708. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114. [Google Scholar]
Types of Tumors | Subtypes of Tumors | 40× | 100× | 200× | 400× | Total | # Patients |
---|---|---|---|---|---|---|---|
Benign | adenosis (A) | 114 | 113 | 111 | 106 | 444 | 4 |
fibroadenoma (F) | 253 | 260 | 264 | 237 | 1014 | 10 | |
phyllodes tumor (PT) | 149 | 150 | 140 | 130 | 569 | 7 | |
tubular adenoma (TA) | 109 | 121 | 108 | 115 | 453 | 3 | |
Total | 625 | 644 | 623 | 588 | 2480 | 24 | |
Malignant | ductal carcinoma (DC) | 864 | 903 | 896 | 788 | 3451 | 38 |
lobular carcinoma (LC) | 156 | 170 | 163 | 137 | 626 | 5 | |
mucinous carcinoma (MC) | 205 | 222 | 196 | 169 | 792 | 9 | |
papillary carcinoma (PC) | 145 | 142 | 135 | 138 | 560 | 6 | |
Total | 1370 | 1437 | 1390 | 1232 | 5429 | 58 |
Dataset | # Images | # Patients (B) | # Patients (M) |
---|---|---|---|
Training | 5590 | 16 | 40 |
Testing | 2319 | 8 | 18 |
Model | 40× | 100× | 200× | 400× | All |
---|---|---|---|---|---|
ResNet-152 | 85.82/85.46/77.13 | 87.34/83.39/75.16 | 87.73/86.03/76.49 | 84.14/82.65/76.87 | 86.33/84.39/76.97 |
DenseNet-201 | 91.59/91.23/77.68 | 92.05/90.81/76.31 | 91.45/93.19/77.58 | 85.43/88.66/77.12 | 90.28/91.06/77.20 |
MobileNet-v2-100 | 83.02/83.77/63.49 | 85.89/90.18/65.86 | 85.38/86.22/67.00 | 89.52/89.52/67.18 | 85.87/87.38/65.62 |
EfficientNet-b7 | 82.55/83.81/73.10 | 83.80/83.63/73.43 | 84.66/86.07/73.85 | 80.69/82.43/66.92 | 82.98/84.02/72.26 |
Model | 40× | 100× | 200× | 400× | All |
---|---|---|---|---|---|
ResNet-152 | 86.23/86.48/79.15 | 89.63/85.59/78.62 | 88.64/86.65/77.01 | 87.17/85.31/79.69 | 88.07/86.01/77.52 |
DenseNet-201 | 92.19/92.15/79.30 | 92.58/90.94/79.83 | 91.50/93.80/80.49 | 87.39/90.77/83.04 | 91.06/91.87/81.03 |
MobileNet-v2-100 | 83.40/83.05/64.06 | 83.34/87.90/64.99 | 83.23/85.93/68.42 | 87.58/88.41/68.13 | 84.19/86.17/65.48 |
EfficientNet-b7 | 81.63/83.47/75.79 | 83.50/83.25/78.63 | 85.54/86.38/76.59 | 80.97/82.86/73.24 | 83.06/84.09/75.61 |
Model | 40× | 100× | 200× | 400× | All |
---|---|---|---|---|---|
ResNet-152 | 72.79/69.85/53.44 | 76.19/64.65/55.06 | 77.64/72.11/61.16 | 67.92/62.65/56.19 | 73.95/67.45/55.99 |
DenseNet-201 | 84.49/84.24/55.63 | 85.89/83.65/60.51 | 85.55/88.89/61.87 | 76.32/82.72/55.09 | 83.16/84.97/58.61 |
MobileNet-v2-100 | 74.79/71.10/39.09 | 76.97/81.97/40.45 | 76.16/74.69/50.55 | 84.43/82.07/51.11 | 77.98/77.38/42.17 |
EfficientNet-b7 | 70.34/72.05/45.83 | 69.74/69.90/43.39 | 74.03/76.70/45.70 | 69.88/72.17/32.69 | 71.03/72.78/40.74 |
Model | 40× | 100× | 200× | 400× | All |
---|---|---|---|---|---|
ResNet-152 | 53.15/453.89/9.85 | 106.21/0.00/9.54 | 63.56/135.56/8.75 | 47.50/64.70/8.03 | 63.03/168.54/10.36 |
DenseNet-201 | 372.36/151.37/8.98 | 162.37/105.57/13.25 | 167.55/218.40/8.89 | 29.21/52.03/8.31 | 97.96/99.81/9.85 |
mobilenet-v2-100 | 21.35/24.20/2.98 | 31.34/71.32/2.19 | 27.28/42.92/3.03 | 65.63/99.94/3.54 | 31.10/48.02/2.75 |
EfficientNet-b7 | 19.34/24.98/5.80 | 22.35/20.97/6.39 | 25.08/31.66/5.52 | 14.10/17.98/3.08 | 19.38/23.00/4.98 |
Model | 40× | 100× | 200× | 400× | All |
---|---|---|---|---|---|
ResNet-152 | 63.69/61.34/41.26 | 68.02/55.50/37.84 | 69.42/63.56/43.78 | 58.27/52.93/42.17 | 65.16/58.42/41.42 |
DenseNet-201 | 78.87/78.27/42.03 | 80.41/77.33/40.94 | 79.56/84.01/46.81 | 65.84/74.28/42.22 | 76.42/78.64/43.91 |
MobileNet-v2-100 | 62.06/60.07/12.65 | 66.85/75.25/13.93 | 65.62/65.51/23.37 | 76.54/24.67/20.55 | 67.59/68.79/20.37 |
EfficientNet-b7 | 58.18/60.90/29.56 | 58.91/58.83/27.31 | 63.21/66.80/28.65 | 55.69/59.37/11.75 | 59.09/61.58/23.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Xie, N.; Yuan, S. A Federated Learning Framework for Breast Cancer Histopathological Image Classification. Electronics 2022, 11, 3767. https://doi.org/10.3390/electronics11223767
Li L, Xie N, Yuan S. A Federated Learning Framework for Breast Cancer Histopathological Image Classification. Electronics. 2022; 11(22):3767. https://doi.org/10.3390/electronics11223767
Chicago/Turabian StyleLi, Lingxiao, Niantao Xie, and Sha Yuan. 2022. "A Federated Learning Framework for Breast Cancer Histopathological Image Classification" Electronics 11, no. 22: 3767. https://doi.org/10.3390/electronics11223767
APA StyleLi, L., Xie, N., & Yuan, S. (2022). A Federated Learning Framework for Breast Cancer Histopathological Image Classification. Electronics, 11(22), 3767. https://doi.org/10.3390/electronics11223767