Semi-Supervised Segmentation of Echocardiography Videos Using Graph Signal Processing
Abstract
:1. Introduction
- Our method supports a new semi-supervised learning model for the left ventricle in echocardiography videos that integrates the graph signal processing where nodes are classified into the left ventricle or background.
- The motion, temporal, statistical, and texture features are used to represent the nodes on the graph. This integration has not appeared in the literature.
- The experiments were applied over two public datasets: EchoNet Dynamic and CAMUS. Despite the scarcity of labeled data, GraphECV surpassed many of the state-of-the-art methods.
2. Related Work
2.1. Graph Signal Processing
2.2. Video Object Segmentation
3. Graph Signal Processing and Semi-Supervised Echocardiography Video Segmentation
3.1. Introduction to Signal Processing on Graphs
3.2. Instance Segmentation
3.3. Feature Extraction and Nodes Representation
3.3.1. Statistical Representation of Echocardiography Data
3.3.2. Texture Features
3.3.3. Nodes Representation of Segmented Instances
3.4. Graph Construction
3.5. Graph Signals
3.6. Semi-Supervised Learning
4. Experimental Results
4.1. Datasets
4.1.1. Echonet-Dynmaic Dataset
4.1.2. CAMUS Dataset
4.2. Evaluation Metric
4.3. Implementation Details
4.4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Cardiac Acquisitions for Multi structure Ultrasound Segmentation | |
Feature Pooling Module | |
Generalized Gama Distribution | |
Graph Signal Processing | |
Local Binary Pattern | |
State-Of-The-Art | |
Video Object Segmentation |
References
- World Health Organization. Cardiovascular Diseases. Available online: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 (accessed on 5 September 2022).
- Attia, D.; Benazza-Benyahia, A. Left ventricle detection in echocardiography videos. In Proceedings of the 2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, 21–24 March 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Madani, A.; Jia Rui Ong, A.T.; Mofrad, M.R.K. Deep echocardiography: Data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease. NPJ Digit. 2018, 1, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giraldo, J.H.; Javed, S.; Bouwmans, T. Graph Moving Object Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 2485–2503. [Google Scholar] [CrossRef] [PubMed]
- Chendeb El Rai, M.; Giraldo, J.H.; Al-Saad, M.; darweesh, M.; Bouwmans, T. SemiSegSAR: A Semi-Supervised Segmentation Algorithm for Ship SAR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Chendeb El Rai, M.; Al-Saad, M.; Darweesh, M.; Al Mansoori, S.; Al Ahmad, H.; Mansoor, W. Moving Objects Segmentation in Infrared Scene Videos. In Proceedings of the 2021 4th International Conference on Signal Processing and Information Security (ICSPIS), Dubai, United Arab Emirates, 24–25 November 2021; pp. 17–20. [Google Scholar] [CrossRef]
- Dong, X.; Thanou, D.; Toni, L.; Bronstein, M.; Frossard, P. Graph Signal Processing for Machine Learning: A Review and New Perspectives. IEEE Signal Process. Mag. 2020, 37, 117–127. [Google Scholar] [CrossRef]
- Stankovic, L.; Mandic, D.P.; Dakovic, M.; Kisil, I.; Sejdic, E.; Constantinides, A.G. Understanding the Basis of Graph Signal Processing via an Intuitive Example-Driven Approach [Lecture Notes]. IEEE Signal Process. Mag. 2019, 36, 133–145. [Google Scholar] [CrossRef]
- Zhen, M.; Li, S.; Zhou, L.; Shang, J.; Feng, H.; Fang, T.; Quan, L. Learning discriminative feature with crf for unsupervised video object segmentation. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 445–462. [Google Scholar]
- Bhatti, A.H.; Rahman, A.U.; Butt, A.A. Unsupervised video object segmentation using conditional random fields. Signal Image Video Process. 2019, 13, 9–16. [Google Scholar] [CrossRef]
- Cheng, J.; Tsai, Y.H.; Wang, S.; Yang, M.H. Segflow: Joint learning for video object segmentation and optical flow. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 686–695. [Google Scholar]
- Ren, Z.; Yan, J.; Ni, B.; Liu, B.; Yang, X.; Zha, H. Unsupervised deep learning for optical flow estimation. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Ding, M.; Wang, Z.; Zhou, B.; Shi, J.; Lu, Z.; Luo, P. Every frame counts: Joint learning of video segmentation and optical flow. Proc. Aaai Conf. Artif. Intell. 2020, 34, 10713–10720. [Google Scholar] [CrossRef]
- Jain, S.; Wang, X.; Gonzalez, J.E. Accel: A corrective fusion network for efficient semantic segmentation on video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8866–8875. [Google Scholar]
- Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy, A.; Brox, T. Flownet 2.0: Evolution of optical flow estimation with deep networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2462–2470. [Google Scholar]
- Wang, H.; Wang, W.; Liu, J. Temporal Memory Attention for Video Semantic Segmentation. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 2254–2258. [Google Scholar]
- Zhang, X.; Xia, Y. LSMVOS: Long-Short-Term Similarity Matching for Video Object. arXiv 2020, arXiv:2009.00771. [Google Scholar]
- Xiao, H.; Feng, J.; Lin, G.; Liu, Y.; Zhang, M. Monet: Deep motion exploitation for video object segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1140–1148. [Google Scholar]
- Girisha, S.; Pai, M.M.M.; Verma, U.; Pai, R.M. Performance Analysis of Semantic Segmentation Algorithms for Finely Annotated New UAV Aerial Video Dataset (ManipalUAVid). IEEE Access 2019, 7, 136239–136253. [Google Scholar] [CrossRef]
- Smistad, E.; Østvik, A. 2D left ventricle segmentation using deep learning. In Proceedings of the 2017 IEEE international ultrasonics symposium (IUS), Washington, DC, USA, 6–9 September 2017; pp. 1–4. [Google Scholar]
- Yuan, Y.; Liang, X.; Wang, X.; Yeung, D.Y.; Gupta, A. Temporal dynamic graph LSTM for action-driven video object detection. In Proceedings of the IEEE International Conference on Computer Vision, Washington, DC, USA, 6–9 September 2017; pp. 1801–1810. [Google Scholar]
- Xu, N.; Yang, L.; Fan, Y.; Yang, J.; Yue, D.; Liang, Y.; Price, B.; Cohen, S.; Huang, T. Youtube-vos: Sequence-to-sequence video object segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 585–601. [Google Scholar]
- Wang, W.; Shen, J.; Porikli, F.; Yang, R. Semi-supervised video object segmentation with super-trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 985–998. [Google Scholar] [CrossRef]
- Duarte, K.; Rawat, Y.S.; Shah, M. Capsulevos: Semi-supervised video object segmentation using capsule routing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 8480–8489. [Google Scholar]
- Luiten, J.; Voigtlaender, P.; Leibe, B. PReMVOS: Proposal-generation, Refinement and Merging for the YouTube-VOS Challenge on Video Object Segmentation 2018. In Proceedings of the 1st Large-Scale Video Object Segmentation Challenge—ECCV Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Deep, G.; Kaur, J.; Singh, S.P.; Nayak, S.R.; Kumar, M.; Kautish, S. MeQryEP: A Texture Based Descriptor for Biomedical Image Retrieval. J. Healthc. Eng. 2022, 2022, 9505229. [Google Scholar] [CrossRef]
- Aggarwal, A.; Madam Chakradar, M.; AL-Dois, H. COVID-19 Risk Prediction for Diabetic Patients Using Fuzzy Inference System and Machine Learning Approaches. J. Healthc. Eng. 2022, 2022, 4096950. [Google Scholar] [CrossRef]
- Dangi, S.; Yaniv, Z.; Linte, C.A. Left Ventricle Segmentation and Quantification from Cardiac Cine MR Images via Multi-task Learning. arXiv 2018, arXiv:1809.10221. [Google Scholar]
- Wu, H.; Liu, J.; Xiao, F.; Wen, Z.; Cheng, L.; Qin, J. Semi-supervised segmentation of echocardiography videos via noise-resilient spatiotemporal semantic calibration and fusion. Med. Image Anal. 2022, 78, 102397. [Google Scholar] [CrossRef]
- Sigit, R.; Rochmawati, E. Segmentation echocardiography video using B-Spline and optical flow. In Proceedings of the International Conference on Knowledge Creation and Intelligent Computing (KCIC), Manado, Indonesia, 15–17 November 2016; pp. 226–231. [Google Scholar] [CrossRef]
- Lim, L.; Keles, H. Foreground segmentation using convolutional neural networks for multiscale feature encoding. Pattern Recognit. Lett. 2018, 112, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Ortega, A.; Frossard, P.; Kovačević, J.; Moura, J.; Vandergheynst, P. Graph Signal Processing: Overview, Challenges, and Applications. Proc. IEEE 2018, 106, 808–828. [Google Scholar] [CrossRef] [Green Version]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Lim, L.A.; Keles, H.Y. Learning multi-scale features for foreground segmentation. Pattern Anal. Appl. 2019, 23, 1369–1380. [Google Scholar] [CrossRef] [Green Version]
- Gifani, P.; Behnam, H.; Haddadi, F.; Sani, Z.A.; Gifani, P. Echocardiography noise reduction using sparse representation. Comput. Electr. Eng. 2016, 53, 301–318. [Google Scholar] [CrossRef]
- Vegas-Sanchez-Ferrero, G.; Aja-Fernandez, S.; Palencia, C.; Martin-Fernandez, M. A generalized gamma mixture model for ultrasonic tissue characterization. Comput. Math. Methods Med. 2012, 2012, 481923. [Google Scholar] [CrossRef] [Green Version]
- Prager, R.W.; Gee, A.H.; Treece, G.M.; Berman, L.H. Analysis of speckle in ultrasound images using fractional order statistics and the homodyned k-distribution. Ultrasonics 2002, 40, 133–137. [Google Scholar] [CrossRef]
- Byra, M.; Nowicki, A.; Wróblewska-Piotrzkowska, H.; Dobruch-Sobczak, K. Classification of breast lesions using segmented quantitative ultrasound maps of homodyned K distribution parameters. Med. Phys. 2016, 43, 5561–5569. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.F. The Nakagami and its related distributions. WSEAS Trans. Math. 2016, 15, 477–485. [Google Scholar]
- Vegas-Sanchez-Ferrero, G.; Seabra, J.; Rodriguez-Leor, O.; Serrano-Vida, A.; Aja-Fernandez, S.; Palencia, C.; Martin-Fernandez, M.; Sanches, J. Gamma mixture classifier for plaque detection in intravascular ultrasonic images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2014, 61, 44–61. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, J.M.; Anfinsen, S.N. Introduction to Second Kind Statistics: Application of Log-Moments and Log-Cumulants to the Analysis of Radar Image Distributions. 2011. Available online: https://www.semanticscholar.org/paper/Introduction-to-Second-Kind-Statistics%3A-Application-Nicolas-Anfinsen/cd3f5316c6975bf512bc25cff20ef8529442c52a (accessed on 5 September 2022).
- Pappas, O.A.; Anantrasirichai, N.; Achim, A.M.; Adams, B.A. River Planform Extraction From High-Resolution SAR Images via Generalized Gamma Distribution Superpixel Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3942–3955. [Google Scholar] [CrossRef]
- Skorton, D.J.; Collins, S.M.; Nichols, J.; Pandian, N.G.; Bean, J.A.; Kerber, R.E. Quantitative texture analysis in two-dimensional echocardiography: Application to the diagnosis of experimental myocardial contusion. Circulation 1983, 68, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Iakovidis, D.K.; Keramidas, E.G.; Maroulis, D.E. Fuzzy Local Binary Patterns for Ultrasound Texture Characterization. In Proceedings of the International Conference Image Analysis and Recognition, Póvoa de Varzim, Portugal, 25–27 June 2008; pp. 750–759. [Google Scholar]
- Moghaddasi, H.; Nourian, S. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos. Comput. Biol. Med. 2016, 73, 47–55. [Google Scholar] [CrossRef]
- Dong, X.; Thanou, D.; Frossard, P.; Vandergheynst, P. Learning Laplacian Matrix in Smooth Graph Signal Representations. IEEE Trans. Signal Process. 2016, 64, 6160–6173. [Google Scholar] [CrossRef] [Green Version]
- Pesenson, I. Variational splines and Paley–Wiener spaces on combinatorial graphs. Constr. Approx. 2009, 29, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Giraldo, J.H.; Bouwmans, T. Semi-Supervised Background Subtraction Of Unseen Videos: Minimization Of The Total Variation Of Graph Signals. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020; pp. 3224–3228. [Google Scholar] [CrossRef]
- Perraudin, N.; Paratte, J.; Shuman, L.M.; Kalofolias, V.; Vandergheynst, P.; Hammond, D. GSPBOX: A toolbox for signal processing on graphs. arXiv 2014, arXiv:1408.5781. [Google Scholar]
- Ouyang, D.; He, B.; Ghorbani, A.; Yuan, N.; Ebinger, J.; Langlotz, C.P.; Heidenreich, P.A.; Harrington, R.A.; Liang, D.H.; Ashley, E.A.; et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature 2020, 580, 252–256. [Google Scholar] [CrossRef]
- Leclerc, S.; Smistad, E.; Pedrosa, J.; Østvik, A.; Cervenansky, F.; Espinosa, F.; Espeland, T.; Berg, E.A.R.; Jodoin, P.M.; Grenier, T.; et al. Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography. IEEE Trans. Med. Imaging 2019, 38, 2198–2210. [Google Scholar] [CrossRef] [Green Version]
- Perazzi, F.; Pont-Tuset, J.; McWilliams, B.; Van Gool, L.; Gross, M.; Sorkine-Hornung, A. A benchmark dataset and evaluation methodology for video object segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 724–732. [Google Scholar]
- Detectron 2. 2019. Available online: https://github.com/facebookresearch/detectron2 (accessed on 5 September 2022).
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef]
- Luiten, J.; Voigtlaender, P.; Leibe, B. PReMVOS: Proposal-generation, Refinement and Merging for Video Object Segmentation. In Asian Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Caelles, S.; Maninis, K.K.; Pont-Tuset, J.; Leal-Taixé, L.; Cremers, D.; Van Gool, L. One-shot video object segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 221–230. [Google Scholar]
Dataset | Unet | DeepLab | Mask-RCNN | FgSegNet_S |
---|---|---|---|---|
EchoNet-Dynamic | 0.6432 | 0.7890 | 0.742 | 0.9113 |
CAMUS | 0.6995 | 0.7890 | 0.7695 | 0.9270 |
k = 5 | k = 10 | k = 20 | k = 30 | |
---|---|---|---|---|
EchoNet-Dynamic | 0.8320 | 0.8523 | 0.8789 | 0.9113 |
CAMUS | 0.8459 | 0.8648 | 0.8837 | 0.9270 |
EchoNet-Dynamic | 0.8589 | 0.9113 | 0.8954 | 0.8561 |
CAMUS | 0.8796 | 0.9270 | 0.9014 | 0.8924 |
EchoNet-Dynamic | 0.8321 | 0.8652 | 0.8789 | 0.8958 |
CAMUS | 0.8591 | 0.8687 | 0.8956 | 0.9087 |
With | Without | |||
---|---|---|---|---|
Dataset | 5% | 30% | 5% | 30% |
EchoNet-Dynamic | 0.9113 | 0.9301 | 0.7919 | 0.8212 |
CAMUS | 0.9270 | 0.9329 | 0.8210 | 0.8531 |
Method | 5% | 10% | 20% | 30% | 50% | 100% |
---|---|---|---|---|---|---|
OSVOS | 0.8012 | 0.8745 | 0.8823 | 0.8912 | 0.9025 | 0.9132 |
PreMVOS | 0.7532 | 0.7756 | 0.7845 | 0.7960 | 0.8023 | 0.8245 |
Echonet | - | - | - | - | - | 0.9200 |
Accel | 0.8496 | 0.8579 | 0.8598 | 0.8609 | 0.8641 | 0.8756 |
TMANET | 0.8523 | 0.8699 | 0.8752 | 0.8895 | 0.9027 | 0.9132 |
Ours | 0.9113 | 0.9209 | 0.9285 | 0.9301 | 0.9355 | 0.9389 |
Method | 5% | 10% | 20% | 30% | 50% |
---|---|---|---|---|---|
OSVOS | 0.8352 | 0.8401 | 0.8479 | 0.8654 | 0.8845 |
PreMVOS | 0.8629 | 0.8710 | 0.8746 | 0.8810 | 0.89553 |
Accel | 0.8745 | 0.8891 | 0.8954 | 0.9058 | 0.9125 |
TMANET | 0.8862 | 0.8954 | 0.9018 | 0.9132 | 0.9258 |
Ours | 0.9270 | 0.9257 | 0.9289 | 0.9329 | 0.9396 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El rai, M.C.; Darweesh, M.; Al-Saad, M. Semi-Supervised Segmentation of Echocardiography Videos Using Graph Signal Processing. Electronics 2022, 11, 3462. https://doi.org/10.3390/electronics11213462
El rai MC, Darweesh M, Al-Saad M. Semi-Supervised Segmentation of Echocardiography Videos Using Graph Signal Processing. Electronics. 2022; 11(21):3462. https://doi.org/10.3390/electronics11213462
Chicago/Turabian StyleEl rai, Marwa Chendeb, Muna Darweesh, and Mina Al-Saad. 2022. "Semi-Supervised Segmentation of Echocardiography Videos Using Graph Signal Processing" Electronics 11, no. 21: 3462. https://doi.org/10.3390/electronics11213462
APA StyleEl rai, M. C., Darweesh, M., & Al-Saad, M. (2022). Semi-Supervised Segmentation of Echocardiography Videos Using Graph Signal Processing. Electronics, 11(21), 3462. https://doi.org/10.3390/electronics11213462