Secure Performance Analysis of Aerial RIS-NOMA-Aided Systems: Deep Neural Network Approach
Abstract
:1. Introduction
1.1. Related Studies
1.2. Motivations and Our Contributions
- This study presents how we derive new closed-form formulas to evaluate the secure performance once legitimate users against the appearance of eavesdroppers who exist in the same group of users. In particular, the SOP and SPSC are computed mathematically. The secure performance analysis is not only crucial to the system dealing with security concerns but also provides some inputs for the machine learning algorithm.
- By enabling real-time configurations, we develop a DNN framework for the RIS-aided system, where the NOMA scheme is converted to an optimal model once the base station is able to predict secure performance thanks to enabling the DNN model. Furthermore, predicting the SOP with high accuracy and short execution time, the DNN model deduces the goodput and energy efficiency (EE).
- Lastly, the normal base station is verified to operate efficiently with the dynamic changes of the environment since the predicted and mathematical curves of SOP are matched tightly through simulation results. We deploy mean squared error (MSE) to demonstrate the effectiveness of the DNN model which is evaluated through the simulation in comparison with the existing conventional approaches. Other results were also assessed to confirm the advances of using RIS and NOMA in improving the performance of wireless communication under attack from eavesdroppers.
2. System Model
3. The Mathematical Method to Achieve Secrecy Performance Metrics
3.1. SOP Analysis
3.2. Asymptotic SOP
3.3. SPSC Analysis
3.4. Asymptotic SPSC
4. Predication of Main Secure Performance Based on DNN
4.1. DNN Model Structure
4.1.1. The Structure of The DNN
4.1.2. Data Set
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Proposition 1
Appendix B. Proof of Proposition 2
References
- Basar, E.; Renzo, M.D.; Rosny, J.D.; Debbah, M.; Alouini, M.-S.; Zhang, R. Wireless communications through reconfigurable intelligent surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Huang, C.; Hu, S.; Alexandropoulos, G.C.; Zappone, A.; Yuen, C.; Zhang, R.; Renzo, M.D.; Debbah, M. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 2020, 58, 106–112. [Google Scholar] [CrossRef]
- Liaskos, C.; Nie, S.; Tsioliaridou, A.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I. A new wireless communication paradigm through softwarecontrolled metasurfaces. IEEE Commun. Mag. 2018, 56, 162–169. [Google Scholar] [CrossRef]
- Huang, C.; Mo, R.; Yuen, C. Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning. IEEE J. Sel. Areas Commun. 2020, 38, 1839–1850. [Google Scholar] [CrossRef]
- Do, D.-T.; Nguyen, M.-S.V.; Voznak, M.; Kwasinski, A.; de Souza, J.N. Performance Analysis of Clustering Car-Following V2X System with Wireless Power Transfer and Massive Connections. IEEE Int. Things J. 2022, 9, 14610–14628. [Google Scholar] [CrossRef]
- Do, D.; Nguyen, M.-S.V. Device-to-device transmission modes in NOMA network with and without Wireless Power Transfer. Comput. Commun. 2019, 139, 67–77. [Google Scholar] [CrossRef]
- Do, D.-T.; Nguyen, M.-S.V.; Jameel, F.; Jäntti, R.; Ansari, I.S. Performance Evaluation of Relay-Aided CR-NOMA for Beyond 5G Communications. IEEE Access 2020, 8, 134838–134855. [Google Scholar] [CrossRef]
- Do, D.-T.; Le, C.-B.; Afghah, F. Enabling Full-Duplex and Energy Harvesting in Uplink and Downlink of Small-Cell Network Relying on Power Domain Based Multiple Access. IEEE Access 2020, 8, 142772–142784. [Google Scholar] [CrossRef]
- Hemanth, A.; Umamaheswari, K.; Pogaku, A.C.; Do, D.-T.; Lee, B.M. Outage Performance Analysis of Reconfigurable Intelligent Surfaces-Aided NOMA Under Presence of Hardware Impairment. IEEE Access 2020, 8, 212156–212165. [Google Scholar] [CrossRef]
- Chen, Q.; Meiling, L.; Xiaoxia, Y.; Ryan, A.; Alshehri, M.D.; Khan, F. Impact of Residual Hardware Impairment on the IoT Secrecy Performance of RIS-Assisted NOMA Networks. IEEE Access 2021, 9, 42583–42592. [Google Scholar] [CrossRef]
- Castanheira, D.; Silva, A.; Dinis, R.; Gameiro, A. Efficient Transmitter and Receiver Designs for SC-FDMA Based Heterogeneous Networks. IEEE Trans. Commun. 2015, 63, 2500–2510. [Google Scholar] [CrossRef]
- Goldsmith, A.; Jafar, S.A.; Jindal, N.; Vishwanath, S. Capacity limits of MIMO channels. IEEE J. Sel. Areas Commun. 2003, 21, 684–702. [Google Scholar] [CrossRef]
- Le, A.-T.; Ha, N.-D.X.; Do, D.; Silva, A.; Yadav, S. Enabling User Grouping and Fixed Power Allocation Scheme for Reconfigurable Intelligent Surfaces-Aided Wireless Systems. IEEE Access 2021, 9, 92263–92275. [Google Scholar] [CrossRef]
- Yang, L.; Yuan, Y. Secrecy outage probability analysis for RIS-assisted NOMA systems. Electron. Lett. 2020, 56, 1254–1256. [Google Scholar] [CrossRef]
- Almohamad, A.; Al-Kababji, A.; Tahir, A.; Khattab, T.; Hasna, M. On Optimizing the Secrecy Performance of RIS-Assisted Cooperative Networks. In Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Virtual, 18 November–16 December 2020; pp. 1–5. [Google Scholar]
- Trigui, I.; Ajib, W.; Zhu, W.-P. Secrecy Outage Probability and Average Rate of RIS-Aided Communications Using Quantized Phases. IEEE Commun. Lett. 2021, 25, 1820–1824. [Google Scholar] [CrossRef]
- Niu, H.; Chu, Z.; Zhou, F.; Zhu, Z. Simultaneous Transmission and Reflection Reconfigurable Intelligent Surface Assisted Secrecy MISO Networks. IEEE Commun. Lett. 2021, 25, 3498–3502. [Google Scholar] [CrossRef]
- Zhong, R.; Liu, Y.; Mu, X.; Chen, Y.; Song, L. AI Empowered RIS-Assisted NOMA Networks: Deep Learning or Reinforcement Learning? IEEE J. Sel. Areas Commun. 2022, 40, 182–196. [Google Scholar] [CrossRef]
- Sezer, A.; Altan, A. Detection of solder paste defects with an optimization based deep learning model using image processing techniques. Solder. Surf. Mt. Technol. 2021, 33, 291–298. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Y.; Chen, Y.; Al-Dhahir, N. Machine Learning for User Partitioning and Phase Shifters Design in RIS-Aided NOMA Networks. IEEE Trans. Commun. 2021, 69, 7414–7428. [Google Scholar] [CrossRef]
- Dai, L.; Wei, X. Distributed Machine Learning Based Downlink Channel Estimation for RIS Assisted Wireless Communications. IEEE Trans. Commun. 2022, 70, 4900–4909. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, C.; Jiang, C.; Jia, F.; Ge, J.; Gong, F. Improving Physical Layer Security for Reconfigurable Intelligent Surface Aided NOMA 6G Networks. IEEE Trans. Veh. Technol. 2021, 70, 4451–4463. [Google Scholar] [CrossRef]
- Tang, Z.; Hou, T.; Liu, Y.; Zhang, J.; Zhong, C. A Novel Design of RIS for Enhancing the Physical Layer Security for RIS-Aided NOMA Networks. IEEE Wirel. Commun. Lett. 2021, 10, 2398–2401. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Chen, Y. Machine Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Wireless Networks. IEEE J. Sel. Areas Commun. 2021, 39, 2042–2055. [Google Scholar] [CrossRef]
- Yue, X.; Liu, Y.; Kang, S.; Nallanathan, A.; Ding, Z. Exploiting Full/Half-Duplex User Relaying in NOMA Systems. IEEE Trans. Commun. 2018, 66, 560–575. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, G.; Atapattu, S.; Tsiftsis, T.A.; Tellambura, C. Is Backscatter Link Stronger than Direct Link in Reconfigurable Intelligent Surface-Assisted System? IEEE Commun. Lett. 2020, 24, 1342–1346. [Google Scholar] [CrossRef]
- Wu, C.; Yan, S.; Zhou, X.; Chen, R.; Sun, J. Intelligent Reflecting Surface (IRS)-Aided Covert Communication With Warden’s Statistical CSI. IEEE Wirel. Commun. Lett. 2021, 10, 1449–1453. [Google Scholar] [CrossRef]
- Benkhelifa, F.; Tall, A.; Rezki, Z.; Alouini, M. On the low SNR capacity of MIMO fading channels with imperfect channel state information. IEEE Trans. Commun. 2014, 62, 1921–1930. [Google Scholar] [CrossRef]
- Abdullah, Z.; Chen, G.; Lambotharan, S.; Chambers, J.A. A Hybrid Relay and Intelligent Reflecting Surface Network and Its Ergodic Performance Analysis. IEEE Wirel. Commun. Lett. 2020, 9, 1653–1657. [Google Scholar] [CrossRef]
- Chen, J.; Yang, L.; Alouini, M. Physical Layer Security for Cooperative NOMA Systems. IEEE Trans. Veh. Technol. 2018, 67, 4645–4649. [Google Scholar] [CrossRef]
- Yang, L.; Yang, J.; Xie, W.; Hasna, M.O.; Tsiftsis, T.; Renzo, M.D. Secrecy Performance Analysis of RIS-Aided Wireless Communication Systems. IEEE Trans. Veh. Technol. 2020, 69, 12296–12300. [Google Scholar] [CrossRef]
- Lu, H.; Zeng, Y.; Jin, S.; Zhang, R. Aerial intelligent reflecting surface: Joint placement and passive beamforming design with 3D beam flattening. IEEE Trans. Wireless Commun. 2021, 20, 4128–4143. [Google Scholar] [CrossRef]
- Do, T.N.; Kaddoum, G.; Nguyen, T.L.; da Costa, D.B.; Haas, Z.J. Aerial Reconfigurable Intelligent Surface-Aided Wireless Communication Systems. In Proceedings of the 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 13–16 September 2021; pp. 525–530. [Google Scholar] [CrossRef]
Inputs | Values |
---|---|
(dB) | [−25, 30] |
M | 100 |
[0.3, 0.4] | |
[0.6, 0.7] | |
(bps/Hz) | 0.1 |
(bps/Hz) | 0.1 |
= | 0.9 |
4 | |
0.8 | |
0.8 | |
1 | |
1 | |
0.7 | |
0.08 | |
(dB) | 19 |
(dB) | M | = (bps/Hz) | = | = | = | (dB) | MSE (DNN) | SOP (Predicted) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 100 | 0.3 | 0.7 | 0.1 | 0.9 | 4 | 0.8 | 1 | 0.7 | 0.08 | 19 | 0.0094821 | 0.7466201 |
10 | 100 | 0.33 | 0.67 | 0.1 | 0.9 | 4 | 0.8 | 1 | 0.7 | 0.08 | 19 | 0.0028316 | 0.7969492 |
10 | 100 | 0.35 | 0.65 | 0.1 | 0.9 | 4 | 0.8 | 1 | 0.7 | 0.08 | 19 | 0.0024541 | 0.8241854 |
10 | 100 | 0.4 | 0.6 | 0.1 | 0.9 | 4 | 0.8 | 1 | 0.7 | 0.08 | 19 | 0.0018977 | 0.8800921 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, H.-P.; Van Nguyen, M.-S.; Do, D.-T.; Nguyen, M.-H.; Pham, M.-T.; Kim, A.-T. Secure Performance Analysis of Aerial RIS-NOMA-Aided Systems: Deep Neural Network Approach. Electronics 2022, 11, 2588. https://doi.org/10.3390/electronics11162588
Dang H-P, Van Nguyen M-S, Do D-T, Nguyen M-H, Pham M-T, Kim A-T. Secure Performance Analysis of Aerial RIS-NOMA-Aided Systems: Deep Neural Network Approach. Electronics. 2022; 11(16):2588. https://doi.org/10.3390/electronics11162588
Chicago/Turabian StyleDang, Huu-Phuc, Minh-Sang Van Nguyen, Dinh-Thuan Do, Minh-Hoa Nguyen, Minh-Triet Pham, and Anh-Tuan Kim. 2022. "Secure Performance Analysis of Aerial RIS-NOMA-Aided Systems: Deep Neural Network Approach" Electronics 11, no. 16: 2588. https://doi.org/10.3390/electronics11162588
APA StyleDang, H.-P., Van Nguyen, M.-S., Do, D.-T., Nguyen, M.-H., Pham, M.-T., & Kim, A.-T. (2022). Secure Performance Analysis of Aerial RIS-NOMA-Aided Systems: Deep Neural Network Approach. Electronics, 11(16), 2588. https://doi.org/10.3390/electronics11162588