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Abstract: The next generation of wireless systems has benefits in terms of spectrum and energy
inefficiencies by exploiting two promising techniques including Non-Orthogonal Multiple Access
(NOMA) and Reconfigurable Intelligent Surfaces (RIS). The scenario of two legitimate users existing
together with an eavesdropper is worth examining in terms of secure matter while enabling machine
learning tools at the base station for expected improvement. The base station deals with a highly
complicated algorithm to adjust parameters against the attack of eavesdroppers and to better improve
the secure performance of mobile users. This paper suggests a better solution to allow the base station
to predict performance at destinations to adjust necessary parameters such as power allocation
coefficients properly. To this end, we propose a deep neural network (DNN)-based approach which
also leverages the benefits of aerial RIS to achieve predictable performance and significant secure
performance improvement could be enhanced. We first derive the formulations for security outage
probability (SOP) in closed-form expressions and analyze the strictly positive secrecy capacity (SPSC),
which are crucial performance metrics to determine how the systems are against the existence of
eavesdroppers. Such eavesdroppers intend to overhear signal transmission dedicated to intended
users and incur degraded system performance. The numerical simulations are expected to evaluate
how the machine learning tool works with the traditional computation of system performance metrics
which is able to be verified by comparing with the Monte-Carlo method. Our numerical simulations
demonstrate that the design of a higher number of meta-surface elements at the RIS, as well as a
higher signal-to-noise ratio (SNR) levels at the base station, are key parameters to achieving improved
security performance for users. For detailed guidelines of the RIS-NOMA aided system, we provide
a table of parameters samples resulting in secure performance as expected.

Keywords: reconfigurable intelligent surfaces; deep learning; secrecy outage probability

1. Introduction

The next generation of wireless systems employing Reconfigurable Intelligent Surfaces
(RIS), similarly discussed as Intelligent Reflecting Surfaces (IRS) and software-controlled
meta-surfaces which are the surfaces that are made of electromagnetic (EM) material which
possess multiple numbers of large passive reflective surfaces that are being controlled
by a microcontroller [1–5]. The foremost advantage of RIS is its capability of controlling
the environment by manipulating electromagnetic signals or radio waves according to
the user requirement [3]. The works from [6–9] have indicated that the inclusion of the
NOMA method into RIS communications has enhanced the efficiency of the RIS device.
In [10], the authors have studied the effect of hardware impairments (HI) in RIS-aided
NOMA communications in means of outage probability and throughput, where the studied
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system has outperformed the traditional Orthogonal Multiple Access (OMA) technique.
Correspondingly, the authors have found that the quantity of reflecting surfaces and power
allocation (PA) factors play a major character in view of the performance efficacy of the
system. In [11], the authors have studied the Residual-HI (RHI) effect on RIS-assisted
downlink NOMA, in which Physical Layer Security (PLS) and SOP are studied by deriving
closed-form expressions. It was proved that the severity effect of RHI will affect the SOP of
the system. The NOMA in the considered system has outperformed the traditional OMA
in view of performance.

The evolution of 5th generation (5G) and 6th generation (6G) wireless networks
has created a huge requirement for massive device connectivity and efficient spectrum
usage. Multiple-input-multiple-output (MIMO) antennas have played a remarkable role in
assisting huge connectivity and enabling quality signal transmission among devices [12].
Though the MIMO technology has numerous advantages, the major drawback of the device
is its hardware costs and deployment complexity [13]. Fortunately, RIS-aided systems
have the ability to address these concerns. The implementation of RIS with single antenna
devices has shown a performance that is nearly the same as MIMO equipped devices [14].
In [15], the authors considered a RIS-assisted NOMA system in PLS perspective with the
presence of an eavesdropper and analyzed the SOP performance of the system in various
scenarios. In [16], the authors have investigated the performance of secrecy capacity of RIS-
assisted cooperative networks in the presence of two legitimate users and an eavesdropper,
having a direct link with the legitimate users. In [17], the authors have investigated the
SOP performance with discrete phase shifts applied at the RIS, considering two scenarios of
colluding and non-colluding eavesdroppers. The simultaneous transmission and reflection
RIS (STAR-RIS) model was proposed [18] in the presence of two legitimate users using a
multiple-input-single-output (MISO) wiretap network. Various problem scenarios were
considered and respective algorithms were suggested to enhance the performance of the
system. It is comparatively shown that the RIS-aided system has a better performance
compared to traditional RIS device integration. However, these traditional approaches
used to evaluate secure performance could be ineffective for several users whose mobility
is high.

1.1. Related Studies

One can leverage the advantages of deep learning (DL) to empower the smart envi-
ronment in signal transmission for wireless systems [19–25], which inspires some attempts
to address the predictable system performance at destination aiming to adjust system
parameters at the base station. In [19], the authors considered the optimization problem
to achieve the optimal throughput related to the entire transmission period. In particular,
the optimal throughput could be conducted by jointly optimizing the power allocation of
the access point and the phase shift of the RIS. The authors also leverage the benefits of a
DL approach and a reinforcement learning (RL) approach to investigate the optimal phase
shifts at RIS. The promising RIS-aided NOMA system is studied in [21] by conducting a
deep deterministic policy gradient (DDPG) algorithm to collaboratively adjust meta-surface
elements of the RIS to obtain an optimal phase shifting matrix. The expected results are
a better sum data rate compared with the traditional OMA while a dynamic resource
allocation policy in the long term is achieved by the DDPG algorithm. Every given state
through exploration and exploitation is processed by learning the optimal action. Similar
work in [22] developed the distributed machine learning (DML) technique to enable the
base station and the users and then achieved a promising method of a downlink channel
estimation using a neural network. To enhance the channel estimation accuracy, a hierar-
chical neural network architecture is explored by extracting different channel features for
different channel scenarios. In the other scenario of RIS-aided unmanned aerial vehicle
(UAV) networks, a deep Q-network (D-DQN)-based approach is performed to deal with
optimization of the energy consumption, phase shifts of the RIS and power allocation
policy from the UAV to mobile users. In this perspective, the central controller relying on
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the D-DQN-based scheme is assigned as an agent for periodically determining the state of
the UAV-aided wireless network and guaranteeing actions to fit the dynamic environment.

1.2. Motivations and Our Contributions

The authors in [23] studied the physical layer security applied in RIS-aided NOMA
6G networks. Although the optimal power allocation scheme can be achieved, but it is
hard to be obtained due to its complexity. If we want to have further improvement of
the system physical security concern, a more effective method is missing. Further, when
deploying NOMA-assisted transmission with RIS-aided communications, previous works
assumed fixed power allocation factors applied for users and secure performance for each
user is unpredictable [24]. Furthermore, the behavior and data demands from mobile users
cannot be measured at the base station. To overcome these aforementioned shortcomings,
we propose an efficient solution relying on DNN to predict secure performance metrics at
mobile users and to be known at the base station. The DNN approaches exhibit a flexible
and smart control related to parameters of NOMA and RIS. With trained neural networks,
the base station in the RIS-aided system can choose proper parameters at the base station
to deal with the enhanced performance expected by mobile users who operate in dynamic
environments. Furthermore, continuous learning with up-to-date data is a new way for
base stations to face the attack of eavesdroppers. To the best of our knowledge, our work
tries to provide a smart way for a base station to adjust its parameters to better serve mobile
users who want to enlarge the advantages of both NOMA and RIS.

We summarize the key findings of this study as follows

• This study presents how we derive new closed-form formulas to evaluate the secure
performance once legitimate users against the appearance of eavesdroppers who exist
in the same group of users. In particular, the SOP and SPSC are computed mathemati-
cally. The secure performance analysis is not only crucial to the system dealing with
security concerns but also provides some inputs for the machine learning algorithm.

• By enabling real-time configurations, we develop a DNN framework for the RIS-
aided system, where the NOMA scheme is converted to an optimal model once
the base station is able to predict secure performance thanks to enabling the DNN
model. Furthermore, predicting the SOP with high accuracy and short execution time,
the DNN model deduces the goodput and energy efficiency (EE).

• Lastly, the normal base station is verified to operate efficiently with the dynamic
changes of the environment since the predicted and mathematical curves of SOP are
matched tightly through simulation results. We deploy mean squared error (MSE)
to demonstrate the effectiveness of the DNN model which is evaluated through the
simulation in comparison with the existing conventional approaches. Other results
were also assessed to confirm the advances of using RIS and NOMA in improving the
performance of wireless communication under attack from eavesdroppers.

The remaining sections of our study can be summarized as follows. The second section
develops a system description. The usual method of computing safe performance metrics
is then demonstrated in Section 3. The machine learning tool for predicting secure metrics
is presented in Section 4. In Section 5, the numerical simulation results are described and
discussed, and in Section 6, the study is concluded.

2. System Model

Consider the downlink RIS-NOMA-aided system shown in Figure 1 where a base
station (BS) intends to communicate with mobile users following the NOMA scheme
with the existence of eavesdroppers. We just focus on presenting the performance of a
selected group of users while other groups have similar analyses. In such a group of
users, the suitable model includes a flying device mounted with a RIS and two legitimate
users (D1) and (D2). The multiple users (more than two users) in a group could be
further researched although it brings worse performance for each user since there is much
interference from surrounding users affecting the considered user. As a key report in [15],
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the two-NOMA users approach exhibits better services in the deployment of the Internet of
Things (IoT) devices rather than the system dealing with groups containing multiple users.
Therefore, our result in this paper could be considered a solution introducing the upper
bound of SOP performance.

BS

Aerial RIS

Main channel
Eaversdropper 

channel

D1

D2

E

hsr,m

hse

hre,m

Machine 

learning module

Off-line 

training

Trained 

DNN 

models

Controller

Feed 

normalized 

parameters

Wired connection

Figure 1. A model of DNN-based RIS-NOMA system.

We refer to examine how an eavesdropper (E) affects secure performance. The number
of meta-surfaces at RIS is denoted as M. Here, RIS can co-work with remaining nodes
which are facilitated with a single antenna for reduced cost of design. The RIS-NOMA
system experiences the Rayleigh fading model to characterize the wireless channels.

In general circumstances, these mobile users have chances to communicate with both
RIS and BS. The RIS is expected to improve performance at destinations while eavesdropper
attacks on transmission are dedicated to legitimate users. The system is assumed to
know the information of the channel state information (CSI) at RIS with respect to the
highest value of the received SNR which is computed to detect signal for dedicated user.
The channel error regarding CSI estimation is beyond the scope of this study.

The BS transmits the superimposed signals to serve two users in the considered group,
xi, (i = 1, 2) corresponding the signal for user Di while P stands for the transmit power at
the BS, βi represents power allocation factors. To guarantee fairness when the BS treats
qualified service to the users related to their QoS demands. Therefore, it is reasonable to
assume that β2 > β1 satisfying β1 + β2 = 1 [26]. We denote the channels hsi , hsr,m, hri ,m,
hse, hre,m following complex Gaussian random variables (RV) with unit variance and zero
mean. These channels experience a slowly varying and flat fading channel model. Further,
the distances for the BS-Di, BS-RIS and RIS-Di, BS-E, RIS-E links are represented by dsi

,
dsr, dri

, dse, dre, respectively. The two mobile users could be evaluated firstly via computing
SNR at D1 which is given by [27,28]

ydl
D1

=

 hs1√
dv

s1

+
M

∑
m=1

hsr,mhr1,m√
dv

srdv
r1

ψmejϕm

(√Pβ1x1 +
√

Pβ2x2

)
+ η1, (1)

where parameter of RIS ϕm is the adjustable phase for the m-th reflecting element of the
RIS, ψm ∈ (0, 1] is the amplitude reflection coefficient while ηi ∼ CN(0, N0) are the additive
white Gaussian noise (AWGN) at Di and such noise follows a zero-mean complex Gaussian
distribution with variance N0, v denotes the path loss exponent.
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In the perceptive of distribution of channels, all small-scale fading channel coefficients
follow independent and identically distributed variables CN(0, 1) [29]. The RIS relying on
a large meta-surface element M is fundamentally expected as a crucial factor to control the
quality of the received signal at users. By exploiting the central limit theorem, we have

M
∑

m=1
hsr,mhri ,m ∼ CN(0, M) and hsi ∼ CN(0, 1) [27]. It is noted that the RIS is able to adjust

its phases ϕm ∈ [0, 2π) of reflector m ∈ {m, . . . , M} conditioned on known CSI [27].
The signal to interference plus noise ratio (SINR) could be calculated at the user D1 to

decode signal x2 as

γdl,x21
D1

=
ρβ2Φ1

ρβ1Φ1 + 1
, (2)

where in order to simplify the analysis, Ideal Passive Beamforming (IPB) with Perfect
Channel Estimation (PCE) is assumed at the RIS, and all elements have the same reflection
amplitude. We have the phase ϕm = arg(hs1) − arg(hsr,mhr1,m) and ψm = ψ, ∀m [30].
We let τB1 = ψ2d−v

sr d−v
r1

, ρ = P
N0

, A1 = |hs1 |, Φ1 = d−v
s1

A1
2 + τB1 B2

1. Due to B1 =∣∣∣∣ M
∑

m=1
hsr,mhr1,mejϕm

∣∣∣∣ = M
∑

m=1
|hsr,m||hr1,m| in the case of perfect CSI [27].

Following the NOMA scheme, the successive interference cancellation (SIC) is enabled
and SNR at the user D1 for detecting signal x1 is given by γdl,x1

D1
= ρβ1Φ1.

Similarly, the second user in this group D2 has the received signal as [27,28]

ydl
D2

=

 hs2√
dv

s2

+
M

∑
m=1

hsr,mhr2,m√
dv

srdv
r2

αmejχm

(√Pβ1x1 +
√

Pβ2x2

)
+ η2, (3)

where the parameter of RIS χm is the adjustable phase for the m-the reflecting element of
the RIS, αm ∈ (0, 1] is the amplitude reflection coefficient.

At the user D2, we refer to achieve SNR for the process of signal decoding x2. Such
SNR can be determined as

γdl,x2
D2

=
ρβ2Φ2

ρβ1Φ2 + 1
, (4)

where in order to simplify the analysis, Ideal Passive Beamforming (IPB) with Perfect
Channel Estimation (PCE) is assumed at the RIS, and all elements have the same reflection
amplitude. We have the phase χm = arg(hs2)− arg(hsr,mhr2,m) and αm = α, ∀m [30]. We

let τB2 = α2d−v
sr d−v

r2
, A2 = |hs2 |, Φ2 = d−v

s2
A2

2 + τB2 B2
2 . Due to B2 =

∣∣∣∣ M
∑

m=1
hsr,mhr2,mejχm

∣∣∣∣ =
M
∑

m=1
|hsr,m||hr2,m| in the case of perfect CSI [27].

From the perspective of PLS, ηe ∼ CN(0, Ne) is denoted as the AWGN of E following
the complex Gaussian distribution with variance Ne. Then, the eavesdropper E has a similar
opportunity to acquire the received signal as [27,28]

ydl
E =

(
hse√

dv
se
+

M

∑
m=1

hsr,mhre,m√
dv

srdv
re

ψmejϕm

)(√
Pβ1x1 +

√
Pβ2x2

)
+ ηe. (5)

Similar to SIC, an eavesdropper leverages parallel interference cancellation (PIC), user
E want to achieve SNR using to decode xi as γ

dl,xi
E = ρeβiΦe [31], where τBe = ψ2d−v

sr d−v
re ,

ρe =
P
Ne

, Ae = |hse|, Be =
M
∑

m=1
|hsr,m||hre,m|, Φe = d−v

se Ae
2 + τBe B2

e . Φe can be approximated

with an exponential RV parameter λΦe = d−v
se + τBe M [32].
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In this step, we refer to the instantaneous secrecy rate to look at how secure perfor-
mance can be evaluated by two users. Firstly, at D1 we compute the instantaneous secrecy
rate as [31,32]

Cdl
D1

= max
{

log2

(
1 + min

(
γdl,x21

D1
, γdl,x1

D1

))
−log2

(
1 + γdl,x1

E

)
, 0
}

. (6)

The similar formula of instantaneous secrecy rate can be represented for user D2 as

Cdl
D2

= max
{

log2

(
1 + γdl,x2

D2

)
− log2

(
1 + γdl,x2

E

)
, 0
}

. (7)

We compute these necessary values of instantaneous secrecy rates to initially determine
how eavesdroppers create a degraded performance for the intended users. However, we
also have other system metrics to demonstrate exact secure outage performance which is
expected to examine in the next section.

3. The Mathematical Method to Achieve Secrecy Performance Metrics
3.1. SOP Analysis

In RIS-NOMA systems, the operation of an eavesdropper makes reduced performance
obtained at the intended users, D1 and D2 which are still empowered by the smart reflection
scheme from RIS. The system works well with expecting rate of Ri. Unfortunately, a security
concern needs to be verified once the corresponding transmission cannot be guaranteed
for the case that the secrecy rate is less than Ri. The two important secure metrics could
be examined, i.e., SOP and SPSC are enough to show initial confirmation in terms of
security problems. The SOP could be computed as the probability which tells us that the
instantaneous secrecy capacity falls below a threshold target secrecy rate and which is
presented as

SOPdl = Pr
(

Cdl
D1

< R1 or Cdl
D2

< R2

)
. (8)

Therefore, secure outage circumstance happens if we refer to the instantaneous secrecy
rate in (6) and (7), i.e., either Cdl

D1
or Cdl

D2
falls below their own target rates. We then

formulate the SOP performance as [31]

SOPdl = 1− Pr

1 + γdl,x21
D1

1 + γdl,x1
E

≥ Cth1 ,
1 + γdl,x1

D1

1 + γdl,x1
E

≥ Cth1


︸ ︷︷ ︸

θdl
1

Pr

1 + γdl,x2
D2

1 + γdl,x2
E

≥ Cth2


︸ ︷︷ ︸

θdl
2

,
(9)

where Cthi
= 2Ri is threshold secure rate [31].

Proposition 1. We represent the approximate closed-form computation of the first important secure
performance, i.e., SOPdl is expressed by

SOPdl ≈ 1−
[

1− exp
(
− β2 − µ1β1

β1β1Cth1 ρeλΦe

)]
×
[

1−
Cth1 ρeλΦe

ρd−v
s1 + Cth1 ρeλΦe

Cth1 ρeλΦe

ρτB1 M + Cth1 ρeλΦe

exp
(
−

1− Cth1

Cth1 ρeβ1λΦe

)]
×
[

1− exp
(
−

β2 − Cth2 β1 + β1

β1β2Cth2 ρeλΦe

)]
,

(10)

where µ1 = Cth1 − 1.
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Proof. We provide the proof in detail in Appendix A.

Remark 1. Although the results of (10) are quite complicated to know how the SOP performance
of the proposed system can be improved by the advantages of RIS, we try to examine several key
parameters such as the threshold secure rate, the setup of RIS, the transmit SNR at the BS and
power allocation factors. These factors are expected to show intuitive illustrations in the numerical
simulation section.

3.2. Asymptotic SOP

Using the aforementioned analytical findings in (10), when ρ → ∞ the asymptotic
SOP is specified by

SOPasym
dl ≈ 1−

[
1− exp

(
− β2 − µ1β1

β1β1Cth1 ρeλΦe

)][
1− exp

(
−

β2 − Cth2 β1 + β1

β1β2Cth2 ρeλΦe

)]
. (11)

3.3. SPSC Analysis

The SOP is not enough to demonstrate secure performance. Therefore, we intend to
calculate SPSC which is considered as the further secrecy performance metric. The existence
of strictly positive secrecy capacity is studied when it occurs as a special case of the SOP for
the case of the target secrecy rate, Ri = 0. In the other way, we represent the probability of
non zero secrecy capacity if we consider γdl,x21

D1
, γdl,x1

D1
, γdl,x2

D2
corresponding, respectively, as

SNRs for legitimate user and eavesdropper as [31]

SPSCdl = Pr
(

Cdl
D1

> 0, Cdl
D2

> 0
)

. (12)

Then, it can be obtained the SPSC performance for the considered system as

SPSCdl = Pr
(

min
(

γdl,x21
D1

, γdl,x1
D1

)
> γdl,x1

E

)
︸ ︷︷ ︸

Ωdl
1

Pr
(

γdl,x2
D2

> γdl,x2
E

)
︸ ︷︷ ︸

Ωdl
2

.
(13)

Proposition 2. We characterize the second performance metric through the approximate formula,
i.e., SPSCdl is given by

SPSCdl ≈
[

1− exp
(
− β2

β1β1ρeλΦe

)][
1− ρeλΦe

ρd−v
s1 + ρeλΦe

ρeλΦe

ρτB1 M + ρeλΦe

]

×
[

1− exp
(
− 1

β1ρeλΦe

)]
.

(14)

Proof. We refer to the proof in detail in Appendix B.

3.4. Asymptotic SPSC

In a similar way, considering (14), when ρ → ∞ the asymptotic SPSC could be
obtained as

SPSCasym
dl ≈

[
1− exp

(
− β2

β1β1ρeλΦe

)][
1− exp

(
− 1

β1ρeλΦe

)]
. (15)

Remark 2. It is hard to know the secure performance at destinations. It is worth pointing out that
the BS relying on DNN can collect some parameters and trains them to predict the performance
of users. The complexity of computations is seen in some derived expressions. We can reduce
computation load by levering DNN. In particular, we expect to have a machine learning tool to deal
with such situations in the next main section.
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4. Predication of Main Secure Performance Based on DNN

The base station arranges several system parameters before transmitting signals to
the RIS and destinations. The fairness and expected secure performance are only known
once signals approach the dedicated users. It is assumed that if secure performance is not
good enough, the user might lose the chance to detect its signal as expected. The results of
secure performance is so complicated since they depend on the propagation environment
and parameters of RIS and NOMA. These procedures take time to proceed and require
the mathematical expression for evaluation of how the system serves secure metrics as
expected, which is infeasible for real-time computing if we deploy such RIS-NOMA in
several practical IoT applications. To overcome such problems, we design the DNN
approach to allow the base station to learn the system variables and compute the secure
metrics properly.

With regard to the model of aerial RIS, it is assumed that the motion in three-dimensional
space (3D) is characterized for the aerial-RIS related to the random waypoint mobility
model. It is noted that a uniform 3D Poisson process is applied to the samples of its
locations and distances among nodes should be updated. It is reasonable to assume that
the 3D motion morphology of Aerial-RIS resembles a 3D cylinder, as depicted in Figure 2.
The distances along with important system parameters are presented in Table 1. The distri-
butions of several values are so complicated, which makes fairness and security possible to
be controlled hard. Finding optimal values in (10) to improve secure performance could
be infeasible. We, fortunately, deploy DNN to indicate the system SOP by treating it as
a regression technique issue in supervised machine learning. For data to be trained, we
provide a data set that completely characterizes the parameters supplied in the considered
system. The considered DNN approach is capable to provide accurate predication of the
SOP when the training process is good enough, shown in Figure 3.

1

0.8

0.6

0.4

0.2

0
0.5

0

0

0.5

 aerial-RIS

E

D2

D1

BS

0.5
0.5

Figure 2. Motion morphology of Aerial-RIS in such RIS-NOMA systems.
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Figure 3. The procedures of SOP prediction.

Table 1. The system parameters using in DNN for training and testing procedures.

Inputs Values

ρ (dB) [−25,30]

M 100

β1 [0.3,0.4]

β2 [0.6,0.7]

R1 (bps/Hz) 0.1

R2 (bps/Hz) 0.1

ψ = α 0.9

v 4

dsr 0.8

ds1 0.8

dr1 1

dr2 1

dre 0.7

λΦe 0.08

ρe (dB) 19

4.1. DNN Model Structure
4.1.1. The Structure of The DNN

The DNN model we use is a feed-forward neural network model. The detailed
configuration of DNN can be seen in Figure 4. Such DNN has single-input layer, single-
output layer, and Dlay hidden layers, and one output layer. The main key system parameters
are provided to the server to add them as input values corresponding 15 neurons, shown
in Table 1. We refer to the output layer with one neuron. To return the predicted SOP,
the linear function along with its activation function is employed, SOPpre [33,34]. There are
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D[i], i = 1, . . . , Dlay, neurons in every single hidden layer i. The system is equipped with
the rectified linear unit (RLU) function as an activation function.

t[1]

t[2]

t[15]

RLU

SOPpre

RLU

RLU

RLU

RLU

RLU

RLU

RLU

... ...
 

 

...

...

Dlay

D[i]

...

Figure 4. The configuration of DNN for the considered regression problem.

4.1.2. Data Set

The server associated with the BS processes with i samples of our data set, the relation-
ship between input and output is Dt[i] = [t[i], SOPdl,i], in which t[i] stands for a feature
vector corresponding to input parameters declared in Table 1. Monte-Carlo simulations
provide feature vector t[i] is used and then returns an expected secure metric SOPdl,i. In this
model, we created 105 samples, i.e., Dt[i], i = 1, . . . , 105. We arranged the data set into
80%, 10% and 10% corresponding to training set, ℵtr, validation set, ℵva, and test set ℵte,
respectively.

We measure how DNN works by considering the MSE, i.e., MSE = 1
|ℵte | ∑

|ℵte |−1
I=0(

SOPpre − SOPte
)2 [33,34].

We leverage Algorithm 1 in [33,34] to refer to necessary procedures for the training
and testing related to such a DNN.

Remark 3. We aim to examine secure performance of the RIS-NOMA-aided system. In this way,
the secure performance of users is evaluated in detail. If we extend the model to the general system
with multiple RIS, multiple users, the method of traditional computations and DNN could be
conducted in similar way.

5. Numerical Results

In this section, to verify mathematical computations, we do a simulation to demon-
strate two secure performance metrics. We compare theorical results with Monte-Carlo
simulation which is expected to match together. Figure 5 represents the flowchart to process
input data with respect to achieving SOP as expected.
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Start

 15 Inputs parameters, Dlay, D[i], 

root MSE,  learning rate, constiture 

the X

It obtains SOPdl by using 

Eq. (10).

The data set building

DNN construction

Data preprocessing and splitting

Training data Testing data

Initialization of DNN

Hidden layers calculation,  Activation function 

calculation, Fully connected layers calculation

Learning error calculation

Update weights and thresholds

Acquire network prediction accuracy

Meet the demands for accuracy?

The best DNN model establishment

Prediction

Obtain the optimal SOP performance result

No

Yes

Figure 5. SOP prediction algorithm.

Figure 6 confirms how DNN achieves the expected accuracy when we compare curves
of the training set and validation set. It can be observed that two curves are matched tightly.
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It also means that the MSE value is able to approach the level of lowest error, and such
MSE can be obtained after conducting 20 epochs.

Figure 6. The MSE convergence in DNN training and validation.

Figure 7 demonstrates SOP versus the transmit SNR at the BS. The numerical results
for both Monte-Carlo and mathematical simulations can be seen as the same value which
means our derived expression of SOP is exact. The SOP performance could be better when
the system increase transmits SNR ρ. It is worth noting that the power allocation factor
βi is used to deal with improvement of SOP. However, these factors cannot be known at
the BS without the assistance of DNN. The BS implement such a DNN to confirm which
power factor should be assigned to each user to satisfy the fairness and data demands.
Such a numerical result is confirmation for expression in (9) and (10). Further, the transmit
SNR ρ contributes significantly to achieving the expected SOP performance. By leveraging
DNN, we have similar values of SOPs which are computed by mathematical method and
DNN method. The SOP performance meets the saturation when the BS has the level of the
transmit SNR as 15 (dB). It can be explained that SOP is based on more system parameters
than ρ which limits the expected performance, for example, channel gains and data rates
Cthi

. More importantly, the lower bounds of such SPSC at four values of β1 can achieved as
ρ goes over 105 (dB). It means limitation of SOP can be seen even though the base station
improves its average SNR.

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

ρ

0.7

0.75

0.8

0.85

0.9

0.95

1

S
O

P

SOP ana.

Asymptotic SOP

Predicted value

β1= 0.3 sim.

β1= 0.33 sim.

β1= 0.35 sim.

β1= 0.4 sim.

Figure 7. SOP versus ρ for different β1.
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Figure 8 confirms other parameters, data rate R1, R2, could be further factor to control
the quality of security at destinations. We present the numerical result for SOP when the BS
increases the transmit SNR. The SOP performance shows its different curves corresponding
to these values of the target rates R1, R2 assigned to the users. The lower value of R1, R2
required at user results in the better SOP performance. It can be explained that SOP
performance derived in (9) and (10) are theoretically limited by such threshold target
rates Cthi

.
We can look at how RIS configuration makes improvement of SOP, shown in Figure 9.

We can see the transmit SNR increases to contribute to enhanced SOP, but it still meets the
saturation as the previous result Figure 8. The number of meta-surface at RIS could be
main factor affecting the SOP performance. It can be explained that SNR at user depends
on channel gains which relies on how large meta-surface of RIS is. We can confirm that
saturation point happens at ρ = 5 (dB).

-20 -15 -10 -5 0 5 10 15 20 25 30

ρ

0.7

0.75

0.8

0.85

0.9

0.95

1

S
O

P

SOP ana.
R1= R2= 0.1 (bps/Hz) sim.
R1= R2= 0.2 (bps/Hz) sim.
R1= R2= 0.3 (bps/Hz) sim.
R1= R2= 0.4 (bps/Hz) sim.

Figure 8. SOP versus ρ for different R1 = R2.

-25 -20 -15 -10 -5 0 5 10 15

ρ

0.7

0.75

0.8

0.85

0.9

0.95

1

S
O

P

SOP ana.

M= 100 sim.

M= 200 sim.

M= 500 sim.

M= 1000 sim.

Figure 9. SOP versus ρ for different M.
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At the eavesdropper, SOP performance Figure 10 can be seen when ρe increases.
Similar trend of SOP is observed in this case.

We can see SPSC performance shown in Figure 11 which confirms the transmit SNR
still contributes to the improvement of SPSC. The BS changes the levels of power allocation
at each user to deal with different values of SPSC. If the BS allocates β1 = 0.3 to the first
user D1 which corresponds to highest value of SPSC. Similar as evaluation of SOP, SPSC
can be enhanced significantly when ρ is greater than 13 (dB). More importantly, the upper
bound of such SPSC can achieved as ρ goes over 15 (dB) which exhibits the limitation of
SPSC although we improve the average SNR at the base station.

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

ρ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
O

P

SOP ana.
ρe= 15 (dB) sim.
ρe= 18 (dB) sim.
ρe= 20 (dB) sim.
ρe= 22 (dB) sim.

Figure 10. SOP versus ρ for different ρe.

-20 -10 0 10 20 30 40

ρ

0

0.05

0.1

0.15

0.2

0.25

0.3

S
P

S
C

SPSC ana.

Asymptotic SPSC

β1= 0.3 sim.

β1= 0.33 sim.

β1= 0.35 sim.

β1= 0.4 sim.

Figure 11. The strictly positive secrecy capacity versus ρ for various β1.



Electronics 2022, 11, 2588 15 of 19

Figure 12 demonstrates the numerical result of SPSC when the BS adjusts the transmit
SNR and RIS also modifies the different levels of amplitude reflection coefficients. It can
give us the strong confirmation that the levels of ψ do not show much effect on SPSC at
high SNR region. We can see that the best performance can be obtained when we have
ψ = α = 1.

-15 -10 -5 0 5 10 15

ρ

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3
S

P
S

C

SPSC ana.

ψ= 0.7 sim.

ψ= 0.8 sim.

ψ= 0.9 sim.

ψ= 1 sim.

Figure 12. SPSC versus ρ for different ψ= α.

As expected, Table 2 is considered as the guideline of main parameters for achieving
the SOP to satisfy QoS requirement from users. This result is necessary to further obtain
the fairness among users.

Table 2. The parameters of the proposed method for better performance.

ρ (dB) M β1 β2
R1 = R2

(bps/Hz) ψ = α v dsr = ds1 dr1 = dr2 dre λΦe

ρe
(dB)

MSE
(DNN)

SOP
(Predicted)

10 100 0.3 0.7 0.1 0.9 4 0.8 1 0.7 0.08 19 0.0094821 0.7466201

10 100 0.33 0.67 0.1 0.9 4 0.8 1 0.7 0.08 19 0.0028316 0.7969492

10 100 0.35 0.65 0.1 0.9 4 0.8 1 0.7 0.08 19 0.0024541 0.8241854

10 100 0.4 0.6 0.1 0.9 4 0.8 1 0.7 0.08 19 0.0018977 0.8800921

6. Conclusions

In this paper, we have deployed DNN to activate smart features at the base station in
the RIS-NOMA system to allow two legitimate users to have different secure performances
based on their demands. We demonstrate the numerical results to look at different secure
performances under the impacts of several parameters such as the transmit SNR at the
base station and the configuration of RIS. The DNN approach provides perfect matching
when we compare the systems between numerical results of mathematical analysis and
machine learning tool. We confirmed the exact computations of expressions derived for
SOP and SPSC via simulations. As the main finding, the number of meta-surfaces at the
RIS and SNR level at the base station contribute mainly to the improvement of security for
DNN-aided RIS-NOMA systems.
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Appendix A. Proof of Proposition 1

From (9) θdl
1 can be written as

θdl
1 = Pr

1 + γdl,x21
D1

1 + γdl,x1
E

≥ Cth1


︸ ︷︷ ︸

θdl
1a

Pr

1 + γdl,x1
D1

1 + γdl,x1
E

≥ Cth1


︸ ︷︷ ︸

θdl
1b

. (A1)

From (A1), we can observe that the variables γdl,x21
D1

is correlated, which makes un-
tractable exact analysis. Hence, we focus on the analysis for high SNR regime and adopt the
following upper bounds γdl,x21

D1
< β2

β1
[31]. Then, an upper bound of θdl

1a can be written as

θdl
1a ≈ Pr

(
1+ β2

β1

1+γ
dl,x1
E

≥ Cth1

)
≈ Pr

(
1 + β2

β1
≥ Cth1

(
1 + γdl,x1

E

))
≈ Pr

(
β2
β1
≥ Cth1 ρeβ1Φe + µ1

)
≈ Pr

(
β2
β1
− µ1 ≥ Cth1 ρeβ1Φe

)
≈ 1− Pr

(
Φe ≥ β2−µ1β1

β1β1Cth1
ρe

)
≈ 1− exp

(
− β2−µ1β1

β1β1Cth1
ρeλΦe

)
.

(A2)

where µ1 = Cth1 − 1.
Then, θdl

1b can be formulated by

θdl
1b = 1− Pr

(
Φe ≥

ρβ1

(
d−v

s1
A1

2+τB1 B2
1

)
+1−Cth1

Cth1
ρe β1

)

= 1−
∫ ∞

0

∫ ∞
0 FΦe

(
ρβ1

(
d−v

s1
x+τB1 y

)
+1−Cth1

Cth1
ρe β1

)
fA1

2(x) fB2
1
(x)dxdy

= 1− 1
M exp

(
− 1−Cth1

Cth1
ρe β1λΦe

) ∫ ∞
0

∫ ∞
0 exp

(
−

ρd−v
s1

x
Cth1

ρeλΦe
− x
)

exp
(
− ρτB1 y

Cth1
ρeλΦe

− y
M

)
dxdy

= 1− 1
M exp

(
− 1−Cth1

Cth1
ρe β1λΦe

) ∫ ∞
0 exp

(
−
(

ρd−v
s1

Cth1
ρeλΦe

+ 1
)

x
)

dx
∫ ∞

0 exp
(
−
(

ρτB1
Cth1

ρeλΦe
+ 1

M

)
y
)

dy

= 1− Cth1
ρeλΦe

ρd−v
s1 +Cth1

ρeλΦe

Cth1
ρeλΦe

ρτB1 M+Cth1
ρeλΦe

exp
(
− 1−Cth1

Cth1
ρe β1λΦe

)
.

(A3)
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From (A2) and (A3) into (A1), θdl
1 can be written as

θdl
1 ≈

[
1− exp

(
− β2−µ1β1

β1β1Cth1
ρeλΦe

)]
×
[

1− Cth1
ρeλΦe

ρd−v
s1 +Cth1

ρeλΦe

Cth1
ρeλΦe

ρτB1 M+Cth1
ρeλΦe

exp
(
− 1−Cth1

Cth1
ρe β1λΦe

)]
.

(A4)

From (9), we can observe that the variables γdl,x2
D2

is correlated, which makes untractable
exact analysis. Hence, we focus on the analysis for high SNR regime and adopt the following
upper bounds γdl,x2

D2
< β2

β1
[31]. Then, an upper bound of θdl

2 can be written as

θdl
2 ≈ Pr

(
1+ β2

β1

1+γ
dl,x2
E

≥ Cth2

)
≈ Pr

(
β2
β1
≥ Cth2 γdl,x2

E + Cth2 − 1
)

≈ 1− Pr
(

β2
β1

< Cth2 ρeβ2Φe + Cth2 − 1
)

≈ 1− Pr
(

Φe >
β2−Cth2

β1+β1
β1Cth2

β2ρe

)
≈ 1− exp

(
− β2−Cth2

β1+β1
β1β2Cth2

ρeλΦe

)
.

(A5)

Substituting (A4) and (A5) into (9), we can obtain (10). The proof is completed.

Appendix B. Proof of Proposition 2

From (13), Ωdl
1 can be written as

Ωdl
1 = Pr

(
γdl,x21

D1
> γdl,x1

E

)
︸ ︷︷ ︸

Ωdl
1a

Pr
(

γdl,x1
D1

> γdl,x1
E

)
︸ ︷︷ ︸

Ωdl
1b

.
(A6)

We can observe that the variables γdl,x21
D1

is correlated, which makes untractable exact
analysis. Hence, we focus on the analysis for high SNR regime and adopt the following
upper bounds γdl,x21

D1
< β2

β1
[31]. Then, an upper bound of Ωdl

1a can be written as

Ωdl
1a ≈ Pr

(
β2
β1
≥ γdl,x1

E

)
≈ Pr

(
β2
β1
≥ ρeβ1Φe

)
≈ Pr

(
Φe >

β2
β1β1ρe

)
≈ 1− exp

(
− β2

β1β1ρeλΦe

)
.

(A7)

Next, Ωdl
1b can be calculated as

Ωdl
1b = 1− Pr

(
Φe ≥

ρβ1

(
d−v

s1
A1

2+τB1 B2
1

)
ρe β1

)

= 1−
∫ ∞

0

∫ ∞
0 FΦe

(
ρ
(

d−v
s1

x+τB1 y
)

ρe

)
fA1

2(x) fB2
1
(x)dxdy

= 1−
∫ ∞

0

∫ ∞
0 exp

(
−

ρ
(

d−v
s1

x+τB1 y
)

ρeλΦe

)
exp(−x) 1

M exp
(
− y

M
)
dxdy

= 1− 1
M
∫ ∞

0 exp
(
−
(

ρd−v
s1

ρeλΦe
+ 1
)

x
)

dx
∫ ∞

0 exp
(
−
(

ρτB1
ρeλΦe

+ 1
M

)
y
)

dy

= 1− ρeλΦe
ρd−v

s1 +ρeλΦe

ρeλΦe
ρτB1 M+ρeλΦe

.

(A8)
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Substituting (A7) and (A8) into (A6), Ωdl
1 can be obtained as

Ωdl
1 ≈

[
1− exp

(
− β2

β1β1ρeλΦe

)][
1− ρeλΦe

ρd−v
s1 +ρeλΦe

ρeλΦe
ρτB1 M+ρeλΦe

]
. (A9)

From (13), we can observe that the variables γdl,x2
D2

is correlated, which makes un-
tractable exact analysis. Hence, we focus on the analysis for high SNR regime and adopt the
following upper bounds γdl,x2

D2
< β2

β1
[31]. Then, an upper bound of Ωdl

2 can be written as

Ωdl
2 ≈ Pr

(
β2
β1
≥ γdl,x2

E

)
≈ Pr

(
β2
β1
≥ ρeβ2Φe

)
≈ 1− Pr

(
Φe >

1
β1ρe

)
≈ 1− exp

(
− 1

β1ρeλΦe

)
.

(A10)

By substituting (A9) and (A10) into (13), we can obtain (14). The proof is completed.
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