Improved Active Disturbance Rejection Control Strategy for LCL-Type Grid-Connected Inverters Based on the Backstepping Method
Abstract
:1. Introduction
2. Preliminaries and Problem Description
2.1. Test System Description
2.2. Constructing the LCL Inverter State Equation
2.3. Design of Second-Order LESO
2.4. Improved Control Law Design Based on LESO Estimation Error Compensation
2.5. Backstepping Outer-Loop Control Law Design
2.6. Parameter Design
3. Performance Analysis of the BS-LADRC
4. Simulation Verification
4.1. Verifying the Controlled Antidisturbance in Disturbances
4.2. Verifying the Transient Tracking Performance of Current Disturbances
4.3. Verification of Grid-Side Power-Glitch-Suppression Harmonic Performance
4.4. Verification of Grid-Side Voltage Harmonic Distortion Rate’s Abrupt Harmonic Suppression Performance
4.5. Harmonic Suppression Performance of Nonlinear Load Surges in the Power Grid
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
dw | Unknown perturbation |
e1 | iMd and the error of its estimate |
e2 | fab and the error of its estimate |
E | Real need for compensation |
fab | Total disturbance inside and outside the system |
iLa, iLb, iLc | Three-phase inverter side a, b, c phase current |
iMa, iMb, iMc | Grid-connected side a, b, c phase load current |
iMd, iMq | Grid-side current under the d-axis and q-axis components |
ua, ub, uc | Phase voltage of the inverter circuit from the center of the three bridge arms to the load |
ud, uq | Inverter-side voltage under the d-axis and q-axis components |
uMa, uMb, uMc | Grid-connected side a, b, c phase load voltage |
uMd, uMq | Grid-side voltage under the d-axis and q-axis components |
Udc | DC busbar voltage |
Estimated value of iMd | |
Estimated value of fab | |
δ1 | Error of e1 with its estimated value |
References
- Wang, S.; Lv, Z. Research on repetitive control method in LCL grid connected inverter. Chin. J. Electr. Eng. 2010, 30, 69–75. [Google Scholar]
- Eren, S.; Pahlevaninezhad, M.; Bakhshai, A. Composite Nonlinear Feedback Control and Stability Analysis of a Grid-Connected Voltage Source Inverter with LCL Filter. IEEE Trans. Ind. Electron. 2013, 60, 5059–5074. [Google Scholar] [CrossRef]
- Xu, J.; Xie, S.; Zhang, B. Review on current control of LCL filter grid connected inverter in distributed generation system. Chin. J. Electr. Eng. 2015, 35, 4153–4166. [Google Scholar]
- Zhu, K.; Sun, P.; Wang, L.; Zhou, L.; Xue, T.; Du, X.; Li, Z. High robustness weighted average current control strategy for LCL grid connected inverter in weak current network. Chin. J. Electr. Eng. 2020, 40, 3592–3602. [Google Scholar]
- Wang, L.; Jiang, Q.; Hong, L.; Zhang, C.; Wei, Y. A novel phase-locked loop based on frequency detector and initial phase angle detector. IEEE Trans. Power Electron. 2013, 28, 4538–4549. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Z.; Tang, W.; Zhu, J. Control strategy of LCL grid connected inverter considering the influence of phase locked loop under weak current network. Power Syst. Prot. Control 2022, 50, 178–187. [Google Scholar]
- Zhang, N.; Tang, H.; Yao, C. A Systematic Method for Designing a PR Controller and Active Damping of the LCL Filter for Single-Phase Grid-Connected PV Inverters. Energies 2014, 7, 3934–3954. [Google Scholar] [CrossRef]
- Tang, Y.; Loh, P.C.; Wang, P. Generalized Design of High Performance Shunt Active Power Filter with Output LCL Filter. IEEE Trans. Ind. Electron. 2012, 59, 1443–1452. [Google Scholar] [CrossRef]
- Guo, L.; Jin, N.; Li, Y.; Dai, L.; Wang, H.; Zhang, K. Model predictive control of grid connected inverter without AC voltage sensor based on sliding mode observer. Power Autom. Equip. 2020, 40, 108–114. [Google Scholar]
- Tan, C.; Chen, Q.; Zhang, L.; Zhou, K. Deadbeat repetitive control of three-phase four leg grid connected inverter. Power Syst. Autom. 2018, 42, 142–148. [Google Scholar]
- Young, H.A.; Marin, V.A.; Pesce, C. Simple Finite-Control-Set Model Predictive Control of Grid-Forming Inverters with LCL Filters. IEEE Access 2020, 8, 81246–81256. [Google Scholar] [CrossRef]
- Dong, R.; Liu, S.; Liang, G.; An, X. Research on Microgrid inverter control method based on model predictive control. Power Syst. Prot. Control 2019, 47, 11–20. [Google Scholar]
- Han, J. From PID technology to “auto disturbance rejection control” technology. Control Eng. 2002, 3, 13–18. [Google Scholar]
- Sun, B.; Gao, Z. A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC power converter. IEEE Trans. Ind. Electron. 2005, 52, 1271–1277. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z. Research on the idea of active disturbance rejection control. Control Theory Appl. 2013, 30, 1498–1510. [Google Scholar]
- Yang, L.; Zeng, J.; Huang, Z. Application of linear active disturbance rejection technology in grid connected current control and active damping of LCL inverter. Power Grid Technol. 2019, 43, 1378–1386. [Google Scholar]
- Yuan, D.; Ma, X.; Zeng, Q.; Qiu, X. Research on frequency band characteristics and parameter allocation of linear ADRC for second order systems. Control Theory Appl. 2013, 30, 1630–1640. [Google Scholar]
- Yang, L.; Zeng, J.; Ma, W.; Huang, Z. Voltage control of microgrid inverter based on improved second-order linear active disturbance rejection technology. Power Syst. Autom. 2019, 43, 146–153. [Google Scholar]
- Zhou, R.; Han, W.; Tan, W. Applicability and tuning of linear active disturbance rejection control. Control Theory Appl. 2018, 35, 1654–1662. [Google Scholar]
- Han, Y.; Xu, M.; Sun, J.; Sun, Y.; Zhao, L.; Tao, L. Grid connection control of wind power system combining correction link and LADRC. J. Power Syst. Autom. 2020, 32, 120–127. [Google Scholar]
- Fu, C.; Tan, W. Parameter adjustment of linear ADRC based on high order controller design. Control Theory Appl. 2017, 34, 265–272. [Google Scholar]
- Li, Z.; Zeng, J.; Huang, J.; Feng, J.; Xiong, T. Time frequency voltage control strategy of microgrid inverter based on linear active disturbance rejection control. Power Syst. Autom. 2020, 44, 145–154. [Google Scholar]
- Chao, Z.; Ji, Z.; Gao, Y. Design and performance analysis of self-anti-disturbance controller based on minimum beat observer. Control Theory Appl. 2015, 32, 29–34. [Google Scholar]
- Yuan, X.; Lou, G.; Chen, L.; Li, Q.; Liu, D.; Gu, W. Smooth switching control strategy of micro grid based on linear active disturbance rejection. Power Grid Technol. 2017, 41, 3824–3831. [Google Scholar]
- Zhou, X.; Liu, W.; Ma, Y.; Zhao, J.; Wang, D.; Qiu, Y. System analysis of three-phase four wire shunt active power filter based on LADRC. High Volt. Technol. 2016, 42, 1290–1299. [Google Scholar]
- Ma, M.; Liao, P.; Cai, Y.; Lei, E.; He, Y. First order ADRC of LCL grid connected inverter and control parameter tuning method based on particle swarm optimization. Power Autom. Equip. 2021, 41, 174–182. [Google Scholar]
- Xu, W.; Wei, Z.; Kong, W.; Pan, L.; Liu, W. Parameter tuning of linear ADRC for PMSM Servo System. Control Theory Appl. 2022, 39, 165–178. [Google Scholar]
- Huang, Q.; Huang, S.; Chen, Z.; Zhou, T.; Ma, M.; Zou, Y.; Kuang, J. Variable structure self-anti-disturbance control of PWM rectifiers under asymmetric voltage. J. Electr. Mach. Control 2014, 18, 50–55. [Google Scholar]
- Zhou, J. Adaptive Backstepping Control of Uncertain Systems. Electron. Opt. Control 2010, 11, 1115–1119. [Google Scholar]
- Zheng, Q.; Richter, H.; Gao, Z. Active Disturbance Rejection Control for Piezoelectric Beam. Asian J. Control 2014, 16, 1612–1622. [Google Scholar] [CrossRef]
- Ma, M.; Liao, P.; Cai, Y.; Lei, E.; He, Y. Active disturbance rejection control strategy of LCL grid connected inverter. High Volt. Technol. 2021, 47, 2223–2231. [Google Scholar]
- Ma, Y.; Zhang, T.; Zhou, X. Improved LADRC control of inverter stage of solid-state transformer based on fuzzy adaptive. J. Power Syst. Autom. 2022, 34, 123–131. [Google Scholar]
Parameters | Value |
---|---|
DC-side voltage Udc/V | 600 |
Power P/kW | 120 |
RMS grid voltage uM/V | 280 |
Resonant frequency f/Hz | 900 |
Inverter-side filter inductor L1/mH | 0.6 |
Switching frequency fsw/kHz | 3.2 |
Grid-side filter inductor L2/mH | 0.3 |
Filter capacitors C/μF | 160 |
Control gain b0 | 625 |
Observer bandwidth ω0 | 1000 |
Controller initial bandwidth ωc | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Ding, W. Improved Active Disturbance Rejection Control Strategy for LCL-Type Grid-Connected Inverters Based on the Backstepping Method. Electronics 2022, 11, 2237. https://doi.org/10.3390/electronics11142237
Zhang Z, Ding W. Improved Active Disturbance Rejection Control Strategy for LCL-Type Grid-Connected Inverters Based on the Backstepping Method. Electronics. 2022; 11(14):2237. https://doi.org/10.3390/electronics11142237
Chicago/Turabian StyleZhang, Zhiru, and Wenfang Ding. 2022. "Improved Active Disturbance Rejection Control Strategy for LCL-Type Grid-Connected Inverters Based on the Backstepping Method" Electronics 11, no. 14: 2237. https://doi.org/10.3390/electronics11142237
APA StyleZhang, Z., & Ding, W. (2022). Improved Active Disturbance Rejection Control Strategy for LCL-Type Grid-Connected Inverters Based on the Backstepping Method. Electronics, 11(14), 2237. https://doi.org/10.3390/electronics11142237