Hybrid Precoding Based on Partial Connection for Millimeter-Wave Massive MIMO System
Abstract
:1. Introduction
- We propose a new alternate optimization framework. The hybrid precoder is effectively designed by SVD variation of the auxiliary matrix, and optimal solutions are provided for both digital and analog precoders in each alternate iteration. Compared with the traditional non-alternate optimization precoding scheme, the system performance is greatly improved
- Aiming at the disadvantage of slow convergence in alternate optimization algorithms, we propose a heuristic algorithm to calculate the initial values of analog precoders. Compared with the traditional alternative optimization method, which randomly sets the initial value, the proposed algorithm converges faster and is less likely to fall into local suboptimal solutions.
- Simulation is performed in a more realistic scenario, which is controlled by the accuracy factor of the channel. In addition, the proposed algorithm does not require an equal relationship between the number of RF chains and the transmitted data streams, which increases the flexibility of its application scenarios.
2. System and Channel Model
2.1. System Model
2.2. Channel Model
3. Hybrid Precoding Design Based on Alternating Optimization
3.1. Problem Description
3.2. Alternating Iterative Design
3.3. Design of Initial Analog Precoder
Algorithm 1 Alternately optimized hybrid precoding scheme. |
Input: channel matrix , optimal precoder preset number of iterations n, send data stream NS. 1. The initial analog precoder is obtained from Equations (18)–(26) 2. Let k = 0, and k is the current number of iterations 3. When , proceed to steps 3–6 4. Fix the analog precoder and obtain from Equation (13) 5. Fix the digital precoder , make block diagonal output for , extract its phase and update 6. Let k = k + 1 and return to step 3 7. Obtain the digital precoder and analog precoder 8. Normalize the digital precoder, Output: |
4. Complexity Analysis
5. Simulation and Analysis
6. Conclusions and Future Work
6.1. Conclusions
6.2. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kao, C.-C.; Chen, C.-E.; Yang, C.-H. Hybrid Precoding Baseband Processor for 64 × 64 Millimeter Wave MIMO Systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 1765–1773. [Google Scholar] [CrossRef]
- Banerjee, A.; Sufian, A.; Paul, K.K.; Gupta, S.K. EDTP: Energy and Delay Optimized Trajectory Planning for UAV-IoT Environment. Comput. Netw. 2022, 202, 108623–108640. [Google Scholar] [CrossRef]
- Srivastava, A.; Gupta, S.K.; Najim, M.; Sahu, N.; Aggarwal, G.; Mazumdar, B.D. DSSAM: Digitally Signed Secure Acknowledgement Method for Mobile Ad Hoc Network. J. Wirel. Commun. Netw. 2021, 2021, 12–41. [Google Scholar] [CrossRef]
- Sharma, D.; Gupta, S.K.; Rashid, A.; Gupta, S.; Rashid, M.; Srivastava, A. A Novel Approach for Securing Data against Intrusion Attacks in unmanned aerial vehicles Integrated heterogeneous network Using Functional Encryption Technique. Trans. Emerg. Telecommun. Technol. 2021, 32, e4114. [Google Scholar] [CrossRef]
- Yan, L.; Han, C.; Yuan, J. A Dynamic Array-of-Subarrays Architecture and Hybrid Precoding Algorithms for Terahertz Wireless Communications. IEEE J. Select. Areas Commun. 2020, 38, 2041–2056. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Uwaechia, A.N.; Mahyuddin, N.M. A Comprehensive Survey on Millimeter Wave Communications for Fifth-Generation Wireless Networks: Feasibility and Challenges. IEEE Access 2020, 8, 62367–62414. [Google Scholar] [CrossRef]
- Alouzi, M.; Chan, F.; D’Amours, C. Low Complexity Hybrid Precoding and Combining for Millimeter Wave Systems. IEEE Access 2021, 9, 95911–95924. [Google Scholar] [CrossRef]
- Yang, F.; Wang, J.-B.; Cheng, M.; Wang, J.-Y.; Lin, M.; Cheng, J. A Partially Dynamic Subarrays Structure for Wideband mmWave MIMO Systems. IEEE Trans. Commun. 2020, 68, 7578–7592. [Google Scholar] [CrossRef]
- Mir, T.; Abbasi, U.; Ali, R.; Hussain, S.M.; Mir, U. Joint Hybrid Precoder and Combiner for Wideband Millimeter-Wave Massive MIMO Systems. IEEE Access 2020, 8, 196375–196385. [Google Scholar] [CrossRef]
- Poon, A.S.Y.; Taghivand, M. Supporting and Enabling Circuits for Antenna Arrays in Wireless Communications. Proc. IEEE 2012, 100, 2207–2218. [Google Scholar] [CrossRef]
- Ahmed, I.; Khammari, H.; Shahid, A.; Musa, A.; Kim, K.S.; De Poorter, E.; Moerman, I. A Survey on Hybrid Beamforming Techniques in 5G: Architecture and System Model Perspectives. IEEE Commun. Surv. Tutor. 2018, 20, 3060–3097. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Wei, Z.; Yang, H.; Zhang, X.; Yang, D. Hybrid Precoding for MmWave Massive MIMO Systems with Partially Connected Structure. IEEE Access 2017, 5, 15142–15151. [Google Scholar] [CrossRef]
- Sohrabi, F.; Yu, W. Hybrid Digital and Analog Beamforming Design for Large-Scale Antenna Arrays. IEEE J. Sel. Top. Signal Process. 2016, 10, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Ayach, O.E.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.; Heath, R.W. Spatially Sparse Precoding in Millimeter Wave MIMO Systems. IEEE Trans. Wirel. Commun. 2014, 13, 1499–1513. [Google Scholar] [CrossRef] [Green Version]
- Buzzi, S.; D’Andrea, C.; Foggi, T.; Ugolini, A.; Colavolpe, G. Single-Carrier Modulation Versus OFDM for Millimeter-Wave Wireless MIMO. IEEE Trans. Commun. 2018, 66, 1335–1348. [Google Scholar] [CrossRef] [Green Version]
- Xie, T.; Dai, L.; Gao, X.; Shakir, M.Z.; Li, J. Geometric Mean Decomposition Based Hybrid Precoding for Millimeter-Wave Massive MIMO. China Commun. 2018, 15, 229–238. [Google Scholar] [CrossRef]
- Cao, H.; Yang, X.; Hu, W.; Ma, Z.; Xu, F.; Fang, X. Hybrid precoding with sub-connected architecture for millimeter wave massive MIMO system. Telecommun. Sci. 2020, 36, 35–42. [Google Scholar]
- Pang, L.; Wu, W.; Zhang, Y.; Yuan, Y.; Chen, Y.; Wang, A.; Li, J. Joint Power Allocation and Hybrid Beamforming for Downlink MmWave-NOMA Systems. IEEE Trans. Veh. Technol. 2021, 70, 10173–10184. [Google Scholar] [CrossRef]
- Salh, A.; Audah, L.; Abdullah, Q.; Aydogdu, O.; Alhartomi, M.A.; Alsamhi, S.H.; Almalki, F.A.; Shah, N.S.M. Low Computational Complexity for Optimizing Energy Efficiency in Mm-Wave Hybrid Precoding System for 5G. IEEE Access 2022, 10, 4714–4727. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Han, S.; Chih-Lin, I.; Heath, R.W. Energy-Efficient Hybrid Analog and Digital Precoding for MmWave MIMO Systems with Large Antenna Arrays. IEEE J. Select. Areas Commun. 2016, 34, 998–1009. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Wang, C.-X.; Sun, J.; Huang, J.; Feng, R.; Yang, Y.; Ge, X. 60-GHz Millimeter-Wave Channel Measurements and Modeling for Indoor Office Environments. IEEE Trans. Antennas Propagat. 2017, 65, 1912–1924. [Google Scholar] [CrossRef]
- Yu, X.; Shen, J.-C.; Zhang, J.; Letaief, K.B. Alternating Minimization Algorithms for Hybrid Precoding in Millimeter Wave MIMO Systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 485–500. [Google Scholar] [CrossRef] [Green Version]
Parameter Name | Parameter Value |
---|---|
Number of transmitting antennas | 128 |
Antenna spacing d | 0.5 mm |
Number of channel scattering clusters | 5 |
Number of paths in each scattering cluster | 25 |
Channel model | Saleh-Valenzuela |
Antenna array | ULA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; Chen, Q.; Peng, J.; Wang, Z.; Xu, F. Hybrid Precoding Based on Partial Connection for Millimeter-Wave Massive MIMO System. Electronics 2022, 11, 2238. https://doi.org/10.3390/electronics11142238
Cao H, Chen Q, Peng J, Wang Z, Xu F. Hybrid Precoding Based on Partial Connection for Millimeter-Wave Massive MIMO System. Electronics. 2022; 11(14):2238. https://doi.org/10.3390/electronics11142238
Chicago/Turabian StyleCao, Haiyan, Qianhong Chen, Jiale Peng, Zhongliang Wang, and Fangmin Xu. 2022. "Hybrid Precoding Based on Partial Connection for Millimeter-Wave Massive MIMO System" Electronics 11, no. 14: 2238. https://doi.org/10.3390/electronics11142238
APA StyleCao, H., Chen, Q., Peng, J., Wang, Z., & Xu, F. (2022). Hybrid Precoding Based on Partial Connection for Millimeter-Wave Massive MIMO System. Electronics, 11(14), 2238. https://doi.org/10.3390/electronics11142238