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Abstract: In the process of grid connection of an LCL inverter, sudden changes in load, high harmonics
of the grid voltage, sudden changes in power, and other disturbances often occur. These will cause
sharp degradation of the grid-connected power quality, so this paper proposes a new solution to
the problem of how to reduce and eliminate disturbances in power quality by using a first-order
linear active disturbance rejection control (LADRC) strategy with precise compensation via splitting
the total disturbance term. An improved overall direct compensation method for total disturbance
was proposed. The use of a subdivision compensation term could avoid the misjudgment arising
from the estimation of the overall perturbation by the linear expanded state observer (LESO) within
the first few weeks of the feedback when the overall compensation was applied. It aimed to reduce
the overshooting caused by the overcompensation of the estimated disturbance term and to shorten
the system convergence speed. Backstepping control was introduced to optimize the intermediate
quantities of LADRC to estimate the error design outer-loop control law. The controlled quantity
tracking the input quantity had excellent characteristics, and could set the desired error range quantity
as the purpose of approximation. Therefore, backstepping control was suitable as a feedforward
control of the system to preprocess the error in the estimated total disturbance of LESO and feed it into
the inner loop improvement LADRC. Secondly, an improved control cascade PWM modulation with
a PLL phase-locked loop to regulate the inverter output resulted in the elimination of the effects of
internal and external disturbances on the grid-connected current and voltage. Finally, the amplitude–
frequency characteristics were analyzed and compared for the trackability and antidisturbance of the
improved linear active disturbance rejection controller, showing a good performance of the improved
active disturbance rejection. At the same time, comparative simulations were conducted to confirm
that the grid-connected current of the LCL inverter could obtain a better stability and grid entry
quality in the first-order improved linear active disturbance rejection control.

Keywords: LCL grid-connected inverter; linear active disturbance rejection control; estimation error;
backstepping control; current quality

1. Introduction

In recent years, the proportion of distributed power-generation systems based on solar
and wind energy has increased year by year. Energy access is influenced by the environment,
often resulting in operation with unknown disturbances such as severe voltage dips and
distortions in the grid. The output effect of LCL inverters can be affected by these, and in
serious cases, they can go off-grid and affect the stable operation of the grid system [1–4].
However, nowadays, various types of grid-connected devices tend to be diversified, and elec-
tromagnetic interference is generated between electronic components [5,6]. Grid conditions
are becoming increasingly complex, leading to difficulties in meeting the requirements of
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both conventional controls in terms of anti-interference capability and harmonic suppres-
sion [7–9]. Many control methods have their own drawbacks, as outlined in [10], or they do
not meet the current quality-control requirements of distributed generation grid-connected
inverters [11,12] and have not been promoted.

Active disturbance rejection control (ADRC) is applied to grid-connected inverters. It
considers disturbances such as current distortion caused by load-side equipment changes,
grid-side power glitches, and inverter-side filter uptake as a generalized total disturbance.
The control law is designed to compensate for the total disturbance with a good control
effect. Due to the more complex structure of a conventional ADRC, the parameters that
can be adjusted can number in the dozens, and it is difficult to adjust for better results
in engineering [13,14]. To simplify the structure, a linear state error feedback (LSEF)
controller was designed. The purpose was to reduce the difficulties in parameter tuning
of the nonlinear segmental function control law in a conventional ADRC. An LSEF and
a linear extended state observer (LESO) together form the core link of a linear active
disturbance rejection control (LADRC) with easy parameter tuning. The parameter tuning
of the LADRC [15–17] is normalized to the observer bandwidth and controller bandwidth
parameters and thus tuned. However, the control performance is also reduced. A method
for modulating fewer LADRC parameters while improving the control performance of the
system has become the focus of research. In the literature [18,19], the observer bandwidth
was improved by adding an overcorrection link to the LADRC, which improved the
observer accuracy. In [20–22], an improved control law for single control of the target by
adding decoupling links and designing a time domain and frequency domain combined
with LADRC. It had a good suppression effect on the harmonic voltage, but the effect
had room for improvement. The authors of [23] improved the dilated state observer to a
generalized integral-type dilated state observer by connecting resonant units in parallel
to achieve an accurate observation of the frequency. In [24,25], the controlled model was
downscaled to maintain the similar transmission characteristics of the higher-order model
in the low and middle frequency domains. This was done in order to reduce the complexity
of the model in engineering regarding parameter adjustments. The authors of [26–28]
designed the LADRC control law to refine the error by splitting the estimation error
term, which improved the control law and the quality of grid connection of the LCL-type
inverter current.

Based on this, an improved first-order linear active disturbance rejection control
strategy based on the grid-connected current stability of LCL inverters is proposed in this
paper to counter the grid-connected current quality problem. A conventional LADRC
generally compensates for the total disturbance as a whole. It causes a large difference
in the initial estimation state, which affects the final convergence time and effect. The
objective was to improve the LADRC to take into account the errors that exist between
the estimated and actual values of the total perturbation in LESO [29,30]. Firstly, the total
disturbance estimate was split by designing the estimation error compensation term to
find the exact compensation term required. Secondly, the control law LSEF compensated
for it and improved the overall control performance. Lastly, the improved LADRC was
combined with backstepping control to achieve the final feedback control.

2. Preliminaries and Problem Description
2.1. Test System Description

The topology of the LCL inverter is shown in Figure 1. Udc indicates the DC bus
voltage of the distributed power supply; iMa, iMb, and iMc comprise the three-phase grid-
side current; uMa, uMb, and uMc are the load voltages per phase on the network side; iLa, iLb,
and iLc comprise the three-phase inverter-side current; ua, ub, and uc are the voltages of
the inverter circuit from the center of the three bridge arms to the load; L1 is the inverter-
side filter inductor; L2 is the grid-side filter inductor; and C is a Y-connected three-phase
filter capacitor.
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Figure 1. LCL grid-connected inverter topology.

The transfer function of the LCL inverter for the current iM(s) on the three-phase load
side and the voltage ud(s) at the output of the inverter circuit was downscaled according
to [31]. The spectral characteristics before and after the degree reduction were further
compared and analyzed. The feedback control acted in the low-frequency band and
the introduction of the ADRC controller did not require an accurate controlled model;
therefore, in order to simplify the complexity of the controller in engineering practice and
to not degrade the controller effect, the inverter model was chosen to be processed in a
reduced order.

The dq-axis model of the reduced-order LCL inverter with capacitor current is:

d
dt

[
iMd(t)
iMq(t)

]
=

1
L1 + L2

[
ud(t)
uq(t)

]
+

[
0 ω0

−ω0 0

][
iMd(t)
iMq(t)

]
− 1

L1 + L2

[
uMd(t)
uMq(t)

]
(1)

where ω0 is obtained by the phase-locked loop for the fundamental frequency of the grid
voltage; under the d-axis and q-axis components of the dq coordinate system, ud, uq is the
inverter side output voltage; iMd and iMq comprise the three-phase load-side current; and
uMd and uMq comprise the three-phase load-side voltage.

2.2. Constructing the LCL Inverter State Equation

There were also load-side equipment operating disturbances or unknown disturbances
dw(t) due to faults in the measurement process. Taking the design of the d-axis first-order
LADRC controller as an example, the LCL inversion differential equation after reduction to
the first order is:

.
iMd(t) =

ud(t)
L1 + L2

+ ω0iMq(t)−
uMd(t)
L1 + L2

+ dw(t) (2)

This is because the inverter equation of state (Equation (2)) under complex operating
conditions includes three terms in addition to the first term. They are internal distur-
bances such as changes in filter inductor parameters, electromagnetic interference from
inverter-side components, and unknown external disturbances. The internal and external
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disturbances in the inverter model are denoted by fab(t), which is uniformly defined as the
total system disturbance as:

fab(t) = ω0iMq(t)−
uMd(t)
L1 + L2

+ dw(t) (3)

Therefore, the differential equation for the inverter load-side current under complex
operating conditions can be further expressed as follows:

.
iMd(t) =

ud(t)
L1 + L2

+ fab(t) (4)

The state variables were set to zd1 = iMd and zd2 = fab, where zd2 is the expansion
state proposed in the linear active disturbance rejection control. Let hab be the first-order
derivative of fab, so that b0ud(t) = ud(t)/(L1 + L2); based on Equation (2), the LCL inverter
differential equation is constructed as the state space equation as:

.
zd1(t) = zd2(t) + b0ud(t)
.
zd2(t) =

.
f ab(t) = hab(t)

zd1(t) = iMd(t)
(5)

2.3. Design of Second-Order LESO

Here, the observations of zd1 and zd2 corresponding to the expansion observer LESO
were defined as

_
z d1 and

_
z d2, the observations corresponding to the load-side currents iMd

and the total disturbance fab of the inverter grid-connected system, respectively. Since in the
state quantity β2(zd1(t)−

_
z d1(t)) � hab(t) of the observed value

_
z d2 in LESO, the dilated

state observer LESO is obtained by Equation (5) as:
.
_
z d1(t) =

_
z d2(t) + β1(zd1(t)−

_
z d1(t)) + b0ud.

_
z d2(t) = β2(zd1(t)−

_
z d1(t))

(6)

where β1 and β2 are parameters in LESO that were optimally tuned to track the LCL
inverter state variables in real time.

2.4. Improved Control Law Design Based on LESO Estimation Error Compensation

Combining Equations (5) and (6), the error between the state quantity zd of LESO and
the estimated quantity

_
z d is defined as the estimation error e1 = zd1 −

_
z d1, e2 = fab −

_
z d2

(fab is the total perturbation), and then Equations (5) and (6) are subtracted to obtain the
state space expression using the estimation error e:{ .

e1 = e2 − β1e1
.
e2 =

.
f ab − β2e1

(7)

After finishing by shifting the term in Equation (7) and performing a Laplace transform,
we have with respect to the estimation errors e1 and e2:{

e1 = s
s2+β1s+β2

fab

e2 = s(s+β1)
s2+β1s+β2

fab
(8)

In Equation (8), it can be seen that the only factor influencing the estimation error
is the total perturbation fab. Therefore, e1 and e2 are the functions e1(fab) and e2(fab) with
respect to fab. The approximate compensation is only required for the estimation error of
the total perturbation, and its approximate compensation effect determines whether the
estimates can accurately follow the state quantities.
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The estimated error model of the controlled object based on compensating for the total
perturbation is noted as:

.
zd1(t) = fab + b0ud(t) (9)

The transfer function of
_
z d with respect to zd1 and ud in the S domain is obtained by

subjecting Equation (6) to a Rasch transform:
_
z d1 = b0s

s2+β1s+β2
ud +

β1s+β2
s2+β1s+β2

zd1
_
z d2 = −b0β2

s2+β1s+β2
ud +

β2s
s2+β1s+β2

zd1
(10)

Combining the Laplace transform with the Equation (10) (
_
z d2), according to the

estimation error model of the total disturbance compensated by Equation (9), we get:

fab =
_
z d2 + (β1 − β1β2)e1 + β2e2 (11)

The design linear state error feedback law is:

ud0(t) = kp(r(t)−
_
z d1(t)) (12)

where kp is the parameter in LSEF, ud0(t) is the output signal of the LSEF link, and r(t) is the
grid rated current’s given value (the system reference signal).

When substituting fab from Equation (11) into Equation (13), the equation of state of
the controlled object based on the control law at this time is:

.
zd1(t) = kp(r(t)−

_
z 1(t)) + fab −

_
z d2(t)

= ud0 + (β1 − β1β2)e1 + β2e2
(13)

Then, define the estimated error compensation term fab −
_
z d2(t) in the state equation

as E:
E = (β1 − β1β2)e1 + β2e2 (14)

The above equation E is the exact compensation term required in the control law. Since
e2 in the estimation error compensation term is the estimation error of the total disturbance,
it needs to be converted to e1 uniformly, which is obtained from (8):

e2 = (s + β1)e1 (15)

i.e., there is:
E(s) = (β1 + β2s)e1 (16)

In addition, the estimation error compensation term needs to be eliminated in the final
control session, and the linear control law is improved as:

ud =
ud0 −

_
z d2 − E
b0

(17)

Figure 2 shows the structure of the modified LADRC, where r(t) = i*Md(t) is the given
value of the d-axis current, b0 = 1/(L1 + L2) is the gain of the linear control law output
voltage ud0, and zd1(t) = iMd(t) is the final output d-axis component current after eliminating
the disturbance on the network-side load. E is able to compensate for the difference between
the estimated total disturbance and the actual total disturbance [32].
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2.5. Backstepping Outer-Loop Control Law Design

Backstepping control is often applied in the control strategy of nonlinear systems. The
control law is constructed using Lyapunov’s second stability theory.

The outer-loop backstepping control constructed the state equation through the inner
loop based on the estimation error e of the optimized network-side current iMd(t) versus

the estimated current
_
i Md(t). The outer-loop control law was designed to approximate

the given target value
_
e . The inner loop controlled the output zd1 via the target value

_
e after convergence of the outer loop. This inner- and outer-loop design converged the
estimation error e to be small enough in the first perimeter compared to the conventional
LADRC. There was a good coupling of the internally defined estimation error e as an
outer-loop state quantity to design the control law. The target value of the convergence of
the design estimation error is

_
e . The accuracy requirement was achieved by backstepping

to approximate the estimation error e. Eventually, the estimated error that converged to the
target value was fed into the LADRC control law to create the steps in Section 2.4.

The estimated errors e1 and e2 of the improved inner-loop LADRC control law were
used as the spatial state quantities when designing the outer-loop backstepping control
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law. According to Equation (7), there are equations of state for e1 and e2, and according to
Equation (8), we know that e1 and e2 are transfer functions with respect to fab as an input.
Using

.
f ab = hab as the inputs to

.
e1 and

.
e2, we constructed the outer-loop state equation

from Equation (7) as: { .
e1 = e2 − β1e1.
e2 = hab − β2e1

(18)

First, we designed the general control target. The error between the definition e and
the target value

_
e of its error is called the target error. The target was designed so that

δ1 converged to 0 in the steady state and so that the equation of state was asymptotically
stable with:

δ1 = e1 −
_
e 1 (19)

According to the definition of the Lyapunov stability, the positive-definite Lyapunov
function V1(δ1) was designed as follows:

V1(δ1) =
1
2

δ1
2 (20)

When differentiating (20) and substituting into Equations (18) and (19), we get:

.
V1(δ1) = δ1(e2 − β1e1 −

.
_
e 1) (21)

According to Lyapunov’s second stability theory, this must be guaranteed to be
negative-definite so that the final state of the system is asymptotically stable. If the first-
order-derivative negative-definite condition is satisfied when

.
V1 = −k1δ1

2 (k1 > 0), set the

final target value of e2 − β1e1 −
.
_
e 1 to −k1δ1 and obtain the target value of e2 (

_
e 2):

_
e 2 = β1e1 +

.
_
e 1 − k1δ1 (22)

Define the target error with respect to e2 and
_
e 2:

δ2 = e2 −
_
e 2 (23)

Similarly, define the new positive-definite Lyapunov function V2(δ1, δ2) as follows:

V2(δ1, δ2) =
1
2

δ1
2 +

1
2

δ2
2 (24)

When substituting (21), (22), and (23) into
.

V2(δ1, δ2), the derivatives are:

.
V2(δ1, δ2) = δ1

.
δ1 + δ2

.
δ2

= δ1(δ2 +
_
e 2 − β1e1 −

.
_
e 1) + δ2

.
δ2

= −k1δ1
2 + δ2(δ1 +

.
δ2)

(25)

Again, it is necessary to ensure that
.

V2 is negative-definite. It is known that the
previous term −k1δ1

2 is negative-definite, and if the final target value of δ2(δ1 +
.
δ2) is

−k2δ2
2(k2 > 0), then the negative-definite condition of the first-order derivative

.
V2 is

satisfied when δ1 +
.
δ2 = −k2δ2. Substituting Equations (6), (20), (21), and (22), we get:

δ1 + k1(e2 − β1e1 −
.
_
e 1)−

..
_
e 1 − β1(e2 − β1e1)− β2e1 + hab = −k2δ2 (26)

The control law of the outer-loop backstepping is obtained by rectifying:
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hab = [(k1 + k2)β1 − β1
2 + β2]e1 + (β1 − k1 − k2)e2 + (k1 + k2)

.
_
e 1 +

..
_
e 1 − (1 + k1k2)δ1 (27)

Figure 3 shows the structure of the backstepping controller designed based on the

error e of the optimized grid-side current iMd(t) and the estimated current
_
i Md(t). After

initially specifying a target value
_
e for the estimation error, the backstepping feedback

control enabled the estimation error e to approximate the target value. This led to the
requirement to optimize the input value of the linear controller (LSEF).
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Thus, the two-step backstepping controller was obtained as:
Figure 4 shows the tracking performance of the backstepping controller after adding

random and impulse perturbations to the input waveform. It can be seen that the target
values could be tracked faster and better.
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Further, coupling the backstepping controller built on the state equation Ge(s) based
on the estimation error e and the LCL inverter grid-side current iMd(t) state equation G(s)
improved the control law LADRC control. The BS-LADRC internal-loop and external-loop
control structure block diagram is shown in Figure 5.
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As shown in Figure 5, the input reference signal grid-side current value i*Md(t) and its
waveform were optimized to initially approach the target current value after the output
of the outer loop. Thus, the BS-LADRC controller differed from the modified LADRC
in Section 2.4 in the input value of the incoming inner loop control law (LSEF). The BS-
LADRC controlled the outer-loop output signal to track the set target value, and the input
inner-loop control law signal was more stable with fewer errors. The aim was to reduce the
convergence time of the inner-loop control and improve the controller’s overall robustness.

2.6. Parameter Design

Using the bandwidth method to design the observer and controller parameters, the
characteristic equation of LESO was obtained as:

λ(s) = s2 + β1s + β2 (28)

According to the root trajectory, the poles were all chosen to be at −ω0. Then, we get
s2 + 2ω0s + ω0

2 = 0. Similarly, according to the closed-loop control, the poles −ωc were
chosen to obtain:

β1 = 2ω0, β2 = ω0
2, kp = ωc (29)

At this time, LADRC only needed to reasonably adjust the controller bandwidth ωc
and the observer bandwidth ω0 to obtain a good control effect. For most of the common
engineering objects, ω0 = (2~5)ωc is generally taken.

3. Performance Analysis of the BS-LADRC

The improved LADRC controller transfer function with respect to the input signal r
and the output signal zd1 was obtained using Equations (10), (12), (16) and (17):

ud =
(s + ω0)

2r
b0(1 − ω02)s2 + ωcs

−
[ω0

2s3 + ω0
2s2 +

(
ω0

2 + 2ω0ωc
)
s + ω0

2ωc]zd1

b0(1 − ω02)s2 + ωcs
(30)

The LADRC transfer-function control block diagram was then obtained (see Figure 6).
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Figure 6. Optimal control law LADRC transfer-function-equivalent diagram.

We conducted an overall analysis of the BS-LADRC control strategy, which combined
Equations (9) and (30) to obtain the respective transfer functions of the system output zd1
with the tracking reference signal r and the total disturbance fab. It represented the tracking
performance and antidisturbance performance of the system.

zd1
r = (s+ω0)

2

s3+(ωc+2ω0)s2+(ω0
2+2ω0ωc)s+ω0

2ωc
zd1
fab

= [(1−ω0
2)s2+ωcs]

s3+(ωc+2ω0)s2+(ω0
2+2ω0ωc)s+ω0

2ωc

(31)

Since the LESO had low-pass filtering characteristics, its ability to track disturbances
at higher frequencies was limited, and the observed value contained amplitude decay and
phase lag compared to the actual value. A comparison of the system tracking performance
compared to the transfer function under a conventional LADRC control is shown in
Figure 7.

The Bode plot of the tracking performance of the LCL grid-connected system is shown
in Figure 8a. The improved first-order self-turbulence controller LCL grid-connected
system exhibited stable amplitude–frequency characteristics and a better pass-through
performance with low- and medium-frequency signal inputs. Compared with the tradi-
tional LADRC phase frequency characteristics, the hysteresis angle was smaller, and the
tracking performance showed a very good improvement. With the same bandwidth, the
improved LADRC had a larger shear frequency than the conventional LADRC, which had
a shorter convergence time and a faster response. As seen in the Bode plot in Figure 8b, the
improved LADRC control exhibited more stable amplitude and frequency characteristics
and a better pass-through performance with low- and medium-frequency signal inputs.
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The adjustment of the parameters affected the antidisturbance control effect of the
improved LADRC. It was obtained using Equation (31), and the disturbance term of the
system output was related to the two parameters ω0 and ωc. The frequency characteristics
when ω0 = 20 and ωc = 20, 40, or 60 were chosen, as shown in Figure 8a. Taking ωc = 20
and ω0 = 20, 40, or 60, the frequency domain characteristic curve could be obtained, as
shown in Figure 8b.

In Figure 8, the appropriate increase in the size of ω0 and ωc can be seen. To im-
prove an LADRC to reduce the range of amplitude variation, reducing the size of the
phase difference was effective, but its c effect was not obvious. Therefore, the main ad-
justment of the antidisturbance performance was ω0. The final result was to improve the
system’s antidisturbance.
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4. Simulation Verification

To verify the control effectiveness of the outer-loop backstepping control system
in combination with the inner-loop improved LADRC, we established an LCL-type in-
verter with a combined internal and external loop control and its PWM modulation on
a MATLAB/Simulink simulation platform. The simulation modeled a random external
disturbance plus a current dip condition on DC side, a sudden change in the disturbance
condition on the load side, and high harmonics. Table 1 shows the main parameters used
in the modeling.

Table 1. Main parameters of system simulation.

Parameters Value

DC-side voltage Udc/V 600

Power P/kW 120

RMS grid voltage uM/V 280

Resonant frequency f /Hz 900

Inverter-side filter inductor L1/mH 0.6

Switching frequency f sw/kHz 3.2

Grid-side filter inductor L2/mH 0.3

Filter capacitors C/µF 160

Control gain b0 625

Observer bandwidth ω0 1000

Controller initial bandwidth ωc 25

For LCL inverters, compound disturbances cause fluctuations in the incoming current,
so a better control strategy was needed to better stabilize the output current waveform.
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4.1. Verifying the Controlled Antidisturbance in Disturbances

The five control strategies; namely, the double-loop PI control, the nonlinear high-
gain robust control, the conventional LADRC, the improved LADRC, and the BS-LADRC
proposed in the paper, were each used to compare the transient signal landing and inter-
spersion with randomly disturbed waveforms to verify that the BS-LADRC had a better
immunity when the system step signal and random disturbance runs were used as input.
Figure 9 shows the antidisturbance waveform plots at the moment of random disturbance
for the five control strategies. It can be seen that the disturbance fluctuated greatly in the
amplitude of the double closed-loop PI control and high-gain robust control. The waveform
of the conventional LADRC was relatively better. In this paper, the control effect of the
LADRC with an improved control law was significantly improved, but its convergence
speed effect was not better. Finally, the BS-LADRC can be seen in the figure as having the
best performance. It was able to control the volatility within 1.51% of the input signal and
converged quickly, with a 53.59% improvement in the convergence speed compared to the
LADRC with an improved control law. Thus, it was verified that the proposed strategy
had a faster convergence speed to reduce the tracking time and a better robustness and
resistance to external disturbances.
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4.2. Verifying the Transient Tracking Performance of Current Disturbances

The total harmonic distortion rate (THD) of the incoming current waveform was
analyzed by comparing the output voltage waveform using the double-loop PI control, the
conventional LADRC, and the BS-LADRC proposed in this paper. Figure 10 shows the
ability of each of the three control strategies to suppress the disturbances. Taking the a-
phase current as an example, a random perturbation was added to the initial input signal in
the full time domain, and a 20% current pulse perturbation was added at 0.025 s. As can be
seen in the figure, the BS-LADRC controller was designed to provide feedforward reverse
control of the injected current during the initial transient. It performed preprocessing
by estimating the perturbation error so that the tracking phase and amplitude had fewer
occurrences of misjudgment, and tracking speed and performance were greatly improved.
The double-loop PI control and the conventional LADRC had a large phase difference
and an overshoot in the first few cycles of the following curve. When compared to the
BS-LADRC, the following interval was short and without overshoot; based on these two
points, the BS-LADRC’s tracking was better. The proposed BS-LADRC control strategy was
significantly better than the previous two in terms of tracking performance, antidisturbance
performance, and suppression of harmonic distortion law.
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Figure 10. Transient tracking performance of current mutation current waveform: (a) double-loop PI
control strategy; (b) classical LADRC strategy; (c) BS-LADRC strategy.
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4.3. Verification of Grid-Side Power-Glitch-Suppression Harmonic Performance

Figure 11 shows the waveform of grid-connected initial current reference i*Md(t) from
100 A due to a sudden change in power and a sudden increase in current of 195 A and
its FFT analysis. Figure 11 shows the steady-state simulation results of the three-phase
grid-side currents when the current injected into the grid increased abruptly from 100 A
to 195 A due to power surges. Based on the designed improved LADRC control law, the
compensation value of the total disturbance was split, and the exact compensation term
was found. The small value of the disturbance term of the accurate compensation term
E avoided overcompensation in the case of sudden changes in current, and eliminated
the disturbance caused by sudden changes in current more accurately and quickly. The
simulation tests clearly showed that even under severely abrupt grid conditions, high-
quality grid-side currents were maintained with a THD value of 0.83%, which was in line
with the specified distortion rate size for grid integration. The current responses reached a
steady state after about 0.5 grid voltage cycles. It was clear that the current quickly tracked
the new reference value without overshooting. This verified the stability and the ideal
transient response of the proposed control scheme. The magnitude of the harmonics was
more evident in the FFT results, as shown in Figure 11b, where it can be seen that the
current controller did a good job of rejecting the distorted harmonics from the grid. This
showed that the BS-ADRC controller limited the distorted harmonics from the grid very
well, resulting in a pure output current.
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Figure 11. Analysis of iM waveform and FFT of grid current before and after power mutation.
(a) Sudden power change before and after the incoming current iM; (b) FFT analysis of grid-connected
currents before and after sudden power changes.
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4.4. Verification of Grid-Side Voltage Harmonic Distortion Rate’s Abrupt Harmonic
Suppression Performance

Figure 12 shows the grid voltage when suddenly jittered and mixed with 3.73% higher
harmonics, its sudden change before and after the grid current i*Md(t) to suppress the
harmonics, and its FFT analysis. The figure shows the simulation results of the transient
grid current response with a distorted grid voltage. The BS-LADRC controlled the transient
grid current response in an operating condition at 50 Hz. The moment of the initial phase
at which the voltage harmonic distortion occurred showed the most severe transient re-
sponse. The grid current control performance under the BS-LADRC controller is indicated
in the figure. The voltage control began at 0.24 s to inject higher harmonics. The start-up
algorithm obtained advance information on the best estimate of the actual grid voltage’s
magnitude and phase angle. The error between the estimated and actual values was fed
into the feedforward control’s backstepping control for initial preprocessing to approxi-
mate within the desired error range, and the optimized error was fed into the improved
LADRC to reduce the possible misjudgment of the estimated value in the first place. The
initial transient overcurrent was 106 A; however, it was quickly eliminated by the inverter
damping link. In Figure 12b, it can be seen that the output iM current distortion rate of
the grid-connected inverter was controlled to 1.94% compared to the grid voltage of 3.73%
after the occurrence of the grid voltage jitter, which still had good power quality.
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Figure 12. Analysis of iM waveform and FFT before and after grid voltage harmonic wave surge.
(a) Waveforms of incoming voltage uM and current iM before and after the sudden increase in voltage
distortion in the power grid; (b) FFT analysis of grid-connected current iM after grid voltage dithering.
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4.5. Harmonic Suppression Performance of Nonlinear Load Surges in the Power Grid

Figure 13 shows a comparison of the harmonic suppression ability of the improved
BS-LADRC (Figure 13a) and the conventional LADRC strategy (Figure 13b) under different
load conditions, with the a-phase load current as an example. Among them, 0.2 s to 0.24 s
were pure resistive loads, 0.24 s to 0.28 s were switched to rectified nonlinear loads, and
after 0.28 s were mixed resistive and rectified loads. A simulation of these load current
harmonics and their THD analysis were performed. The total harmonic distortion rate of
the output voltage waveform at various loads is indicated in the figure. It can be intuitively
seen that the proposed BS-LADRC strategy was more capable of suppressing harmonics
under mixed loads with nonlinear loads and resistive and rectified sums compared to the
conventional LADRC.
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5. Conclusions

In this paper, based on the conventional control of an LCL-type inverter, we combined
the idea of self-immunity to generalize the disturbance and observe its disturbance size
for compensation. The control law was improved to precisely find the compensation term
and to optimize the intermediate state variable e. Finally, we proposed the BS-LADRC
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strategy. This improved control strategy combined the advantages of a fast convergence
of the backstepping control and robustness of the LADRC. It compared with the classical
LADRC used for grid-connected current control. The improved controller optimized the
case in which the current did not converge fast enough and stored excess current when
sudden changes occurred in the system. Its adaptability to the damping link improved
the tracking speed and convergence of the feedback, and refined the internal and external
perturbations of the system. The system often had resonance, a long-standing type of
interference that is difficult to eliminate. There is a need to improve the grid-connected
environment when the controller generates high odd harmonics under sudden voltage
changes, sudden system power changes, etc. The improved LADRC had better harmonic
suppression compared to the classical LADRC. In addition, the control method proposed
in this paper was compared with the current cutting-edge LCL inverter current-control
strategy [32]. In the exact solution of the total perturbation, the literature provided designs
and approximations only for one of them (e1), while the method proposed in this paper
solved for the perturbation compensation term E more comprehensively while considering
the effect of the two quantities of intermediate estimation error (e1 and e2) acting together
on E. In the case of abrupt changes in the harmonic distortion rate, its THD value in terms of
immunity to disturbance showed an improvement of nearly 0.7% compared to that found in
the literature. Our study showed that the proposed improved LCL inverter grid-connected
current-control strategy could better solve the harsh grid environment problem faced by
grid-connected strategies in similar studies we found. It had strong robustness to system
dynamic disturbances and harmonics, with a good dynamic and steady-state performance.
Subsequent work will focus on the design of the LADRC while taking into account the
control delay and modulation delay factors used to improve the immunity and accuracy of
LCL inverter systems with active filter hardware.
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Abbreviations

dw Unknown perturbation
e1 iMd and the error of its estimate
e2 fab and the error of its estimate
E Real need for compensation
fab Total disturbance inside and outside the system
iLa, iLb, iLc Three-phase inverter side a, b, c phase current
iMa, iMb, iMc Grid-connected side a, b, c phase load current
iMd, iMq Grid-side current under the d-axis and q-axis components
ua, ub, uc Phase voltage of the inverter circuit from the center of the three bridge arms to the load
ud, uq Inverter-side voltage under the d-axis and q-axis components
uMa, uMb, uMc Grid-connected side a, b, c phase load voltage
uMd, uMq Grid-side voltage under the d-axis and q-axis components
Udc DC busbar voltage
_
z d1 Estimated value of iMd
_
z d2 Estimated value of fab
δ1 Error of e1 with its estimated value
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