A HighEfficiency HighPowerDensity SiCBased Portable Charger for Electric Vehicles
Abstract
:1. Introduction
 The portable charger does not need to be stored in the vehicle if the level3 dc charging function is mainly used, e.g., at a parking place of retail shops or at the workplace [26]. This releases construction space, which can be used for additional battery capacity and thus extends the range of the EV. Furthermore, the portable charger does not have to comply with automotive standards (lifetime, vibration stress).
 By using the established dc charging interfaces, a specific charger per vehicle type and manufacturer is not necessary. Portable chargers from different manufacturers would be compatible with each other, resulting in lower costs due to economies of scale, less electronic waste, and simple replacement in case of a defect.
 The universal approach opens up further possibilities: sharing or temporarily lending a portable charger, mobile charging services, and using the portable charger as a charging station at home.
2. Portable OffBoard Charger Specification
3. AC–DC Converter Stage
3.1. Evaluation of PFC Topology
3.2. Inductor Design
4. DCDC Converter Stage
4.1. Configuration of the LLC Resonant Converter
4.2. Design of the LLC Resonant Converter
4.3. HF Transformer and Resonance Inductor Design
5. Control Strategy
5.1. TwoStage System Control
 The red control loop realizes the peak current mode control, the current limitation, and the PFC function. The current through the MOSFETs is sensed by a shunt, which is inserted between the MOSFETs and the “M” potential. A detailed description of the peak current mode control can be found in [69].
 The blue control loop is the outer voltage control loop for the dclink, which also balances the voltage across the seriesconnected dclink capacitors to ensure that they are uniformly loaded with V_{dc}/2 during operation. Only one voltage control loop is implemented, and the control value is passed to all three PFC current controllers.
 A charge controller realizes the different charging modes “constant current” (CC), “constant power” (CP), and “constant voltage” (CV), which is shown in orange. A PI controller compares the measured output current multiplied by the battery voltage with the target output power. In addition, the current system temperatures are taken into account for the implementation of a derating function, which reduces the nominal value of the charging power depending on the thermal conditions. The control value of the charge controller is passed to the input of the blue voltage control loop and thus for the dclink voltage, which is varied according to the current battery voltage and state of charge, respectively.
5.2. Current Sharing in LLC Resonant Converter
6. Experimental Verification
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
 Ahmad, A.; Alam, M.S.; Chabaan, R. A Comprehensive Review of Wireless Charging Technologies for Electric Vehicles. IEEE Trans. Transp. Electrif. 2018, 4, 38–63. [Google Scholar] [CrossRef]
 Mahone, A.; Subin, Z.; Orans, R.; Miller, M.; Regan, L.; Calviou, M.; Saenz, M.; Bacalao, N. On the Path to Decarbonization: Electrification and Renewables in California and the Northeast United States. IEEE Power Energy Mag. 2018, 16, 58–68. [Google Scholar] [CrossRef]
 Fulli, G.; Masera, M.; Spisto, A.; Vitiello, S. A Change is Coming: How Regulation and Innovation Are Reshaping the European Union’s Electricity Markets. IEEE Power Energy Mag. 2019, 17, 53–66. [Google Scholar] [CrossRef]
 Khaligh, A.; D’Antonio, M. Global Trends in HighPower OnBoard Chargers for Electric Vehicles. IEEE Trans. Veh. Technol. 2019, 68, 3306–3324. [Google Scholar] [CrossRef]
 Li, H.; Zhang, Z.; Wang, S.; Tang, J.; Ren, X.; Chen, Q. A 300kHz 6.6kW SiC Bidirectional LLC Onboard Charger. IEEE Trans. Ind. Electron. 2020, 67, 1435–1445. [Google Scholar] [CrossRef]
 Li, B.; Li, Q.; Lee, F.C.; Liu, Z.; Yang, Y. A HighEfficiency HighDensity WideBandgap DeviceBased Bidirectional OnBoard Charger. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 1627–1636. [Google Scholar] [CrossRef]
 Endres, S.; Sessler, C.; Zeltner, S.; Eckardt, B.; Morita, T. 6 kW Bidirectional, Insulated Onboard Charger with NormallyOff GaN Gate Injection Transistors. In PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management; VDE: Nuremberg, Germany, 2017; pp. 1–6. [Google Scholar]
 Whitaker, B.; Barkley, A.; Cole, Z.; Passmore, B.; Martin, D.; McNutt, T.R.; Lostetter, A.B.; Lee, J.S.; Shiozaki, K. A HighDensity, HighEfficiency, Isolated OnBoard Vehicle Battery Charger Utilizing Silicon Carbide Power Devices. IEEE Trans. Power Electron. 2014, 29, 2606–2617. [Google Scholar] [CrossRef]
 Wei, C.; Shao, J.; Agrawal, B.; Zhu, D.; Xie, H. New Surface Mount SiC MOSFETs Enable High Efficiency High Power Density Bidirectional OnBoard Charger with Flexible DClink Voltage. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 17–21 March 2019; pp. 1904–1909. [Google Scholar]
 Schmenger, J.; Endres, S.; Zeltner, S.; März, M. A 22 kW onboard charger for automotive applications based on a modular design. In Proceedings of the 2014 IEEE Conference on Energy Conversion (CENCON), Johor Bahru, Malaysia, 13–14 October 2014; pp. 1–6. [Google Scholar]
 Gautam, D.S.; Musavi, F.; Edington, M.; Eberle, W.; Dunford, W.G. An Automotive Onboard 3.3kW Battery Charger for PHEV Application. IEEE Trans. Veh. Technol. 2012, 61, 3466–3474. [Google Scholar] [CrossRef]
 Lu, J.; Liu, G.; Bai, H.; Brown, A.; Johnson, P.M.; McAmmond, M.; Taylor, A.R. Applying VariableSwitchingFrequency VariablePhaseShift Control and EMode GaN HEMTs to an Indirect Matrix ConverterBased EV Battery Charger. IEEE Trans. Transp. Electrif. 2017, 3, 554–564. [Google Scholar] [CrossRef]
 Tang, Y.; Lu, J.; Wu, B.; Zou, S.; Ding, W.; Khaligh, A. An Integrated DualOutput Isolated Converter for Plugin Electric Vehicles. IEEE Trans. Veh. Technol. 2018, 67, 966–976. [Google Scholar] [CrossRef]
 BRUSA Elektronik, AG. NLG667—On Board Fast Charger. Available online: https://www.brusa.biz/produkte/ladetechnik/ladegeraete750v/nlg667.html (accessed on 18 March 2020).
 AVID Technology Limited. Onboard Battery Charger: 22kW SAE J1772 On Board Charger Solution for Electric and Hybrid Vehicles, Available with Output Voltage up to 850V. Available online: https://avidtp.com/product/onboardcharger/ (accessed on 29 April 2022).
 FinePower GmbH. Automotive Isolated Onboard Charger for EV/HEV. Available online: https://www.finepower.com/wpcontent/uploads/2017/11/Datasheet_Automotive_isolated_onboardcharger_web.pdf (accessed on 29 April 2022).
 Innolectric AG. OnBoard Charger: Efficient Power Electronics for AC and DC Charging. OnBoard Charger OBC82. Available online: https://innolectric.ag/wpcontent/uploads/2020/03/innolectric_OnBoard_Charger_E2_20021.pdf (accessed on 29 April 2022).
 Stercom GmbH. OnBoard Charger OBC_22kW. Available online: https://stercom.de/en/service/downloads.html (accessed on 24 March 2020).
 Current Ways Inc. CWBC Series 6.6kW BiDirectional EV On Board Charger. Available online: https://currentways.com/wpcontent/uploads/2013/10/CWBCSeries6.6kWBidirectionalOBCLiquidCooled050918.pdf (accessed on 29 April 2022).
 Current Ways Inc. BCSeries 3kW 112450 Volt IP67 Rated AirCooled EV Battery Charger. Available online: https://currentways.com/wpcontent/uploads/2013/10/dsair225.pdf (accessed on 29 April 2022).
 Ovar Clean Energy Technology Co., Ltd. EV OnBoard Charger: Model CAD332DF400A 3.3 kW. Available online: https://www.ovartech.com/wpcontent/uploads/2017/12/3.3KWOBCCAD332DF400A.pdf (accessed on 29 April 2022).
 Friedli, T.; Hartmann, M.; Kolar, J.W. The Essence of ThreePhase PFC Rectifier Systems—Part II. IEEE Trans. Power Electron. 2014, 29, 543–560. [Google Scholar] [CrossRef]
 Prasad, R.; Namuduri, C.; Kollmeyer, P. Onboard unidirectional automotive G2V battery charger using sine charging and its effect on liion batteries. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 6299–6305. [Google Scholar]
 Jung, C. Power Up with 800V Systems: The benefits of upgrading voltage power for batteryelectric passenger vehicles. IEEE Electrif. Mag. 2017, 5, 53–58. [Google Scholar] [CrossRef]
 Porsche Newsroom. The Charging Process: Quick, Comfortable, Intelligent and Universal. Available online: https://newsroom.porsche.com/en/products/taycan/charging18558.html (accessed on 28 April 2022).
 Bowermaster, D.; Alexander, M.; Duvall, M. The Need for Charging: Evaluating utility infrastructures for electric vehicles while providing customer support. IEEE Electrif. Mag. 2017, 5, 59–67. [Google Scholar] [CrossRef]
 Liu, Z.; Lee, F.C.; Li, Q.; Yang, Y. Design of GaNBased MHz TotemPole PFC Rectifier. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 799–807. [Google Scholar] [CrossRef]
 Endruschat, A.; Novak, C.; Gerstner, H.; Heckel, T.; Joffe, C.; März, M. A Universal SPICE FieldEffect Transistor Model Applied on SiC and GaN Transistors. IEEE Trans. Power Electron. 2019, 34, 9131–9145. [Google Scholar] [CrossRef]
 Ehrlich, S.; Rossmanith, H.; Sauer, M.; Joffe, C.; März, M. Fast Numerical Power Loss Calculation for HighFrequency Litz Wires. IEEE Trans. Power Electron. 2021, 36, 2018–2032. [Google Scholar] [CrossRef]
 IEC 6185123:2014; Electric Vehicle Conductive Charging System—Part 23: DC Electric Vehicle Charging Station. IEC: Geneva, Switzerland, 2014.
 IEC 621961:2014; Plugs, SocketOutlets, Vehicle Connectors and Vehicle Inlets—Conductive Charging of Electric Vehicles—Part 1, 2, 3. IEC: Geneva, Switzerland, 2014.
 Phoenix Contact. Charging Technology for Electromobility—Product Overview 2019/2020. Available online: https://www.phoenixcontact.com/assets/2018/interactive_ed/101_142148/epaper/CAT_7_2019_EN_LoRes.pdf (accessed on 28 April 2022).
 Kolar, J.W.; Friedli, T. The Essence of ThreePhase PFC Rectifier Systems—Part I. IEEE Trans. Power Electron. 2013, 28, 176–198. [Google Scholar] [CrossRef]
 Wang, X.; Jiang, C.; Lei, B.; Teng, H.; Bai, H.K.; Kirtley, J.L. PowerLoss Analysis and Efficiency Maximization of a SiliconCarbide MOSFETBased ThreePhase 10kW Bidirectional EV Charger Using VariableDCBus Control. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 880–892. [Google Scholar] [CrossRef]
 Kolar, J.W.; Zach, F.C. A Novel ThreePhase ThreeSwitch ThreeLevel PWM Rectifier. In Proceedings of the 28th Power conversion Conference, Nürnberg, Germany, 28–30 June 1994; pp. 125–138. [Google Scholar]
 Guan, Q.; Li, C.; Zhang, Y.; Wang, S.; Xu, D.D.; Li, W.; Ma, H. An Extremely High Efficient ThreeLevel Active NeutralPointClamped Converter Comprising SiC and Si Hybrid Power Stages. IEEE Trans. Power Electron. 2018, 33, 8341–8352. [Google Scholar] [CrossRef]
 Rodriguez, J.; Lai, J.S.; Peng, F.Z. Multilevel inverters: A survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 2002, 49, 724–738. [Google Scholar] [CrossRef] [Green Version]
 Stupar, A.; Friedli, T.; Minibock, J.; Kolar, J.W. Towards a 99% Efficient ThreePhase BuckType PFC Rectifier for 400V DC Distribution Systems. IEEE Trans. Power Electron. 2012, 27, 1732–1744. [Google Scholar] [CrossRef]
 Schrittwieser, L.; Leibl, M.; Haider, M.; Thony, F.; Kolar, J.W.; Soeiro, T.B. 99.3% Efficient ThreePhase BuckType AllSiC SWISS Rectifier for DC Distribution Systems. IEEE Trans. Power Electron. 2019, 34, 126–140. [Google Scholar] [CrossRef]
 Heckel, T.; Rettner, C.; März, M. Fundamental efficiency limits in power electronic systems. In Proceedings of the 2015 IEEE International Telecommunications Energy Conference (INTELEC), Osaka, Japan, 18–22 October 2015; pp. 1–6. [Google Scholar]
 Albach, M. Induktivitäten in der Leistungselektronik: Spulen, Trafos und ihre Parasitären Eigenschaften; Springer: Wiesbaden, Germany, 2017; ISBN 9783658150808. [Google Scholar]
 IEC 60205:2016; Calculation of the Effective Parameters of Magnetic Piece Parts. IEC: Geneva, Switzerland, 2016.
 Magnetics A Division of Spang & Company. Effects of Temperature on Core Loss of Alloy Powder Cores. Available online: https://www.maginc.com/Media/Magnetics/FileLibrary/Product%20Literature/Powder%20Core%20Literature/EffectsofTemperatureonCoreLossofAlloyPowderCores.pdf?ext=.pdf (accessed on 30 May 2022).
 Albach, M.; Durbaum, T.; Brockmeyer, A. Calculating Core Losses in Transformers for Arbitrary Magnetizing Currents a Comparison of Different Approaches. In Proceedings of the PESC Record. 27th Annual IEEE Power Electronics Specialists Conference, Baveno, Italy, 23–27 June 1996; pp. 1463–1468. [Google Scholar]
 Muhlethaler, J.; Biela, J.; Kolar, J.W.; Ecklebe, A. Core Losses Under the DC Bias Condition Based on Steinmetz Parameters. IEEE Trans. Power Electron. 2012, 27, 953–963. [Google Scholar] [CrossRef]
 Albach, M. Twodimensional calculation of winding losses in transformers. In Proceedings of the 2000 IEEE 31st Annual Power Electronics Specialists Conference. Conference Proceedings (Cat. No.00CH37018), Galway, Ireland, 18–23 June 2000; pp. 1639–1644. [Google Scholar]
 Wang, H.; Dusmez, S.; Khaligh, A. Maximum Efficiency Point Tracking Technique for LLCBased PEV Chargers Through Variable DC Link Control. IEEE Trans. Ind. Electron. 2014, 61, 6041–6049. [Google Scholar] [CrossRef]
 Deng, J.; Mi, C.C.; Ma, R.; Li, S. Design of LLC Resonant Converters Based on OperationMode Analysis for Level Two PHEV Battery Chargers. IEEE/ASME Trans. Mechatron. 2015, 20, 1595–1606. [Google Scholar] [CrossRef]
 Xu, H.; Yin, Z.; Zhao, Y.; Huang, Y. Accurate Design of HighEfficiency LLC Resonant Converter With Wide Output Voltage. IEEE Access 2017, 5, 26653–26665. [Google Scholar] [CrossRef]
 Suryawanshi, H.M.; Talapur, G.G.; Ballal, M.S. Optimized Resonant Converter by Implementing Shunt Branch Element as Magnetizing Inductance of Transformer in Electric Vehicle Chargers. IEEE Trans. Ind. Appl. 2019, 55, 7471–7480. [Google Scholar] [CrossRef]
 He, P.; Mallik, A.; Sankar, A.; Khaligh, A. Design of a 1MHz HighEfficiency HighPowerDensity Bidirectional GaNBased CLLC Converter for Electric Vehicles. IEEE Trans. Veh. Technol. 2019, 68, 213–223. [Google Scholar] [CrossRef]
 Zhang, Z.; Liu, C.; Wang, M.; Si, Y.; Liu, Y.; Lei, Q. HighEfficiency HighPowerDensity CLLC Resonant Converter with LowStrayCapacitance and WellHeatDissipated Planar Transformer for EV OnBoard Charger. IEEE Trans. Power Electron. 2020, 35, 10831–10851. [Google Scholar] [CrossRef]
 Li, B.; Li, Q.; Lee, F.C. HighFrequency PCB Winding Transformer With Integrated Inductors for a BiDirectional Resonant Converter. IEEE Trans. Power Electron. 2019, 34, 6123–6135. [Google Scholar] [CrossRef]
 Ren, X.; Xu, Z.; Zhang, Z.; Li, H.; He, M.; Tang, J.; Chen, Q. A 1kV Input SiC LLC Converter With Split Resonant Tanks and Matrix Transformers. IEEE Trans. Power Electron. 2019, 34, 10446–10457. [Google Scholar] [CrossRef]
 Zou, S.; Lu, J.; Mallik, A.; Khaligh, A. Modeling and Optimization of an Integrated Transformer for Electric Vehicle OnBoard Charger Applications. IEEE Trans. Transp. Electrif. 2018, 4, 355–363. [Google Scholar] [CrossRef]
 Zhang, J.; Ouyang, Z.; Duffy, M.C.; Andersen, M.A.E.; Hurley, W.G. Leakage Inductance Calculation for Planar Transformers With a Magnetic Shunt. IEEE Trans. Ind. Appl. 2014, 50, 4107–4112. [Google Scholar] [CrossRef] [Green Version]
 Biela, J.; Kolar, J.W. Electromagnetic integration of high power resonant circuits comprising high leakage inductance transformers. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany, 20–25 June 2004; pp. 4537–4545. [Google Scholar]
 Saket, M.A.; Shafiei, N.; Ordonez, M. LLC Converters With Planar Transformers: Issues and Mitigation. IEEE Trans. Power Electron. 2017, 32, 4524–4542. [Google Scholar] [CrossRef]
 Lazar, J.F.; Martinelli, R. Steadystate analysis of the LLC series resonant converter. In Proceedings of the APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181), Anaheim, CA, USA, 4–8 March 2001; pp. 728–735. [Google Scholar]
 Ditze, S.; Heckel, T.; März, M. Influence of the junction capacitance of the secondary rectifier diodes on output characteristics in multiresonant converters. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 864–871. [Google Scholar]
 Lu, B.; Liu, W.; Liang, Y.; Lee, F.C.; van Wyk, J.D. Optimal design methodology for LLC resonant converter. In Proceedings of the TwentyFirst Annual IEEE Applied Power Electronics Conference and Exposition, 2006. APEC ’06, Dallas, TX, USA, 19–23 March 2006. [Google Scholar] [CrossRef]
 Kundu, U.; Yenduri, K.; Sensarma, P. Accurate ZVS Analysis for Magnetic Design and Efficiency Improvement of FullBridge LLC Resonant Converter. IEEE Trans. Power Electron. 2017, 32, 1703–1706. [Google Scholar] [CrossRef]
 Kazimierczuk, M.K.; Czarkowski, D. Resonant Power Converters, 2. Auflage; WileyIEEE Press: New York, NY, USA, 2012; ISBN 0470905387. [Google Scholar]
 McLyman, C.W.T. Transformer and Inductor Design Handbook, 3rd ed.; rev. and expanded; Dekker: New York, NY, USA, 2004; ISBN 0824753933. [Google Scholar]
 Li, J.; Abdallah, T.; Sullivan, C.R. Improved calculation of core loss with nonsinusoidal waveforms. In Proceedings of the Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248), Chicago, IL, USA, 30 September–4 October 2001; Volume 4, pp. 2203–2210. [Google Scholar] [CrossRef]
 Sullivan, C.R. Optimal choice for number of strands in a litzwire transformer winding. IEEE Trans. Power Electron. 1999, 14, 283–291. [Google Scholar] [CrossRef] [Green Version]
 Kolar, J.W.; Neumayr, D.; Bortis, D. The Google Little Box Challenge—UltraCompact GaN or SiCBased SinglePhase DC/AC Power Conversion. In Proceedings of the 19th European Conference on Power Electronics and Applications (EPE’17—ECCE Europe), Warsaw, Poland, 11–14 September 2017. [Google Scholar] [CrossRef]
 Stolzke, T.; Ehrlich, S.; Joffe, C.; März, M. Comprehensive accuracy examination of electrical power loss measurements of inductive components for frequencies up to 1 MHz. J. Magn. Magn. Mater. 2020, 497, 166022. [Google Scholar] [CrossRef]
 Erickson, R.W.; Maksimović, D. Fundamentals of Power Electronics, 2nd ed.; 6 printing; Kluwer Academic Publishers: Norwell, MA, USA, 2004; ISBN 0792372700. [Google Scholar]
 Arshadi, S.A.; Ordonez, M.; Eberle, W.; Saket, M.A.; Craciun, M.; Botting, C. Unbalanced ThreePhase LLC Resonant Converters: Analysis and Trigonometric Current Balancing. IEEE Trans. Power Electron. 2019, 34, 2025–2038. [Google Scholar] [CrossRef]
Parameter  Value 

Input voltage V_{ac}  3~, 400 V_{AC}, 50 Hz 
Output voltage V_{Batt}  620–850 V_{DC} 
Input power P_{ac}  11 kW 
Target weight  5 kg 
Target volume  5 L 
Charging connector  CCS Combo2 
Galv. isolation  mandatory 
Thermal management  forced aircooling 
Topology  Voltage Rating (V)  Current Rating (A)  OnState Resistance R_{DSon} (mΩ) 

VIENNA  900  11.5 … 35  65 … 280 
6SBoost  1200  30 … 115  16 … 75 
Parameter  Value 

Mains voltage V_{ac}  3~, 400 V_{AC}, 50 Hz 
DClink voltage V_{link}  800 V_{DC} 
Input power P_{ac}  11 kW 
Switching frequency f_{sw,PFC}  50 kHz … 500 kHz 
PFC inductance L_{PFC}  10 μH … 300 μH 
Parameter  Value 

Core material  High Flux 14 High Flux 26 High Flux 40 High Flux 60 
Component volume V_{Tc}  15 cm³ … 75 cm³ 
Geometry ratio Θ_{B}  0.1 … 0.9 
Geometry ratio Θ_{C}  0.1 … 1 
Switching frequency f_{sw,PFC}  50 kHz … 200 kHz 
PFC coil inductance L_{PFC}  30 μH … 180 μH 
Parameter  Optimization Result  Prototype 

Core material  High Flux 60  High Flux 60 
A_{Tc}  45.2 mm  46.7 mm 
B_{Tc}  24.9 mm  24.1 mm 
C_{Tc}  19.2 mm  18 mm 
L_{PFC}  100 μH  100 μH 
N_{PFC}  27  27 
Winding diameter  1.6 mm  1.5 mm 
Sum core loss  4.98 W  4.76 W 
Sum winding loss  4.17 W  4.45 W 
Total loss P_{L}  9.15 W  9.21 W 
Parameter  Value 

Input voltage V_{dc}  750–900 V_{DC} 
Output voltage V_{Batt}  620–850 V_{DC} 
Number of phases  3 
Nominal output power per phase P_{LLC,nom}  3.6 kW 
Switching frequency f_{sw,LLC}  1 MHz 
Resonant frequency f_{sr}  1.02 MHz 
Primary MOSFET  C3M0065100J 
Equivalent output capacitance MOSFET C_{oss}  70 pF 
Secondary diode  IDM10G120G5 
Equivalent output capacitance diode C_{j}  60 pF 
Dead time t_{dead}  100 ns 
Transformer turns ratio n  1.06:1 
Resonant capacitance C_{res}  1.62 nF 
Resonant inductance L_{res}  15 μH 
Magnetizing inductance L_{m}  39 μH 
Target volume of transformer and inductance  0.1 L 
Parameter  Range 

Transformer: number of turns (primary) N_{p}  5, 10, 16, 20 
Transformer: number of turns (secondary) N_{s}  5, 10, 16, 20 
Resonance inductor: number of turns N_{res}  1 … 10 
Core geometry ratio χ_{BA}  0.2 … 2 
Core geometry ratio χ_{CA}  0.2 … 2 
Winding window ratio χ_{w}  0.1 … 0.9 
Filling factor of Litz wire in the winding window ρ_{w}  0.05 … 0.7 
Volumes V_{Ec,tr}, V_{Ec,res}  0.01 L … 1 L 
Loss (W)  3D Simulation  Measurement 

Transformer winding loss  9.3   
Inductor winding loss  2.4   
Sum winding loss  11.7  10.5 
Transformer core loss  6.4   
Inductance core loss  4.5   
Sum core loss  10.9   
Total loss  22.6  23.8 
References  Efficiency (%)  Cooling  Characteristics 

[5]  96  aircooled 

[6]  96.2  watercooled 

[7]  94.7  watercooled 

[8]  94.7  aircooled 

[9]  96  aircooled 

[10]  94  watercooled 

[12]  97  aircooled 

Our proposal  95.8  aircooled 

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ditze, S.; Ehrlich, S.; Weitz, N.; Sauer, M.; Aßmus, F.; Sacher, A.; Joffe, C.; Seßler, C.; Meißner, P. A HighEfficiency HighPowerDensity SiCBased Portable Charger for Electric Vehicles. Electronics 2022, 11, 1818. https://doi.org/10.3390/electronics11121818
Ditze S, Ehrlich S, Weitz N, Sauer M, Aßmus F, Sacher A, Joffe C, Seßler C, Meißner P. A HighEfficiency HighPowerDensity SiCBased Portable Charger for Electric Vehicles. Electronics. 2022; 11(12):1818. https://doi.org/10.3390/electronics11121818
Chicago/Turabian StyleDitze, Stefan, Stefan Ehrlich, Nikolai Weitz, Marco Sauer, Frank Aßmus, Anne Sacher, Christopher Joffe, Christoph Seßler, and Patrick Meißner. 2022. "A HighEfficiency HighPowerDensity SiCBased Portable Charger for Electric Vehicles" Electronics 11, no. 12: 1818. https://doi.org/10.3390/electronics11121818