A Review of the Reliability of Integrated IR Laser Diodes for Silicon Photonics
Abstract
:1. Introduction
2. Reliability of Heterogeneous III–V Lasers on SOI Substrates
3. Reliability of InAs Quantum-Dot Laser Epitaxially Grown on Silicon
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Amano, H.; Collazo, R.; De Santi, C.; Einfeldt, S.; Funato, M.; Glaab, J.; Hagedorn, S.; Hirano, A.; Hirayama, H.; Ishii, R.; et al. The 2020 UV emitter roadmap. J. Phys. D. Appl. Phys. 2020, 53, 503001. [Google Scholar] [CrossRef]
- Paniccia, M. Integrating silicon photonics. Nat. Photonics 2010, 4, 498–499. [Google Scholar]
- Lau, K.M. Micro-LED displays: Can the monolithic approach produce full-color? In Proceedings of the Digest of Technical Papers-SID International Symposium, San Jose, CA, USA, May 2019; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2019; Volume 50, pp. 20–21. [Google Scholar]
- Nishikawa, A.; Loesing, A.; Slischka, B. Achieving high uniformity and yield of 200 mm GaN-on-Si LED epiwafers for micro LED applications with precise strain-engineering. In Proceedings of the Digest of Technical Papers-SID International Symposium, San Jose, CA, USA, May 2019; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2019; Volume 50, pp. 338–341. [Google Scholar]
- Wang, H.; Lin, Z.; Lin, Y.; Wang, W.; Li, G. High-Performance GaN-Based LEDs on Si Substrates: The Utility of Ex Situ Low-Temperature AlN Template with Optimal Thickness. IEEE Trans. Electron Devices 2017, 64, 4540–4546. [Google Scholar] [CrossRef]
- Lee, M.K.; Wuu, D.S.; Tung, H.H. Heteroepitaxial growth of InP directly on Si by low pressure metalorganic chemical vapor deposition. Appl. Phys. Lett. 1987, 50, 1725–1726. [Google Scholar] [CrossRef]
- Park, J.S.; Tang, M.; Chen, S.; Liu, H. Heteroepitaxial growth of iii-v semiconductors on silicon. Crystals 2020, 10, 1163. [Google Scholar] [CrossRef]
- Sugo, M.; Mori, H.; Tachikawa, M.; Itoh, Y.; Yamamoto, M. Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1.55 μm on a Si substrate. Appl. Phys. Lett. 1990, 57, 593–595. [Google Scholar] [CrossRef]
- Buffolo, M.; Meneghini, M.; De Santi, C.; Davenport, M.L.; Bowers, J.E.; Meneghesso, G.; Zanoni, E. Degradation Mechanisms of Heterogeneous III-V/Silicon 1.55- μm DBR Laser Diodes. IEEE J. Quantum Electron. 2017, 53, 1–8. [Google Scholar] [CrossRef]
- Margalit, N.; Xiang, C.; Bowers, S.M.; Bjorlin, A.; Blum, R.; Bowers, J.E. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett. 2021, 118, 220501. [Google Scholar] [CrossRef]
- Liang, D.; Roelkens, G.; Baets, R.; Bowers, J.E. Hybrid Integrated Platforms for Silicon Photonics. Materials 2010, 3, 1782–1802. [Google Scholar] [CrossRef] [Green Version]
- Liang, D.; Fang, A.W.; Park, H.; Reynolds, T.E.; Warner, K.; Oakley, D.C.; Bowers, J.E. Low-Temperature, Strong SiO2-SiO2 Covalent Wafer Bonding for III–V Compound Semiconductors-to-Silicon Photonic Integrated Circuits. J. Electron. Mater. 2008, 37, 1552–1559. [Google Scholar] [CrossRef]
- Pasquariello, D.; Hjort, K. Plasma-assisted InP-to-Si low temperature wafer bonding. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 118–131. [Google Scholar] [CrossRef]
- Bowers, J.E.; Liang, D.; Fang, A.W.; Park, H.; Jones, R.; Paniccia, M.J. Hybrid Silicon Lasers: The Final Frontier to Integrated Computing. Opt. Photonics News 2010, 21, 28. [Google Scholar] [CrossRef] [Green Version]
- Komljenovic, T.; Davenport, M.; Hulme, J.; Liu, A.Y.; Santis, C.T.; Spott, A.; Srinivasan, S.; Stanton, E.J.; Zhang, C.; Bowers, J.E. Heterogeneous silicon photonic integrated circuits. J. Light. Technol. 2016, 34, 20–35. [Google Scholar] [CrossRef]
- Norman, J.C.; Jung, D.; Zhang, Z.; Wan, Y.; Liu, S.; Shang, C.; Herrick, R.W.; Chow, W.W.; Gossard, A.C.; Bowers, J.E. A review of high-performance quantum dot lasers on silicon. IEEE J. Quantum Electron. 2019, 55, 2000511. [Google Scholar] [CrossRef]
- Liu, A.Y.; Srinivasan, S.; Norman, J.; Gossard, A.C.; Bowers, J.E. Quantum dot lasers for silicon photonics [Invited]. Photonics Res. 2015, 3, B1. [Google Scholar] [CrossRef]
- Selvidge, J.; Norman, J.; Jung, D.; Hughes, E.; Salmon, M.; Bowers, J.; Herrick, R.; Mukherjee, K. Improving Reliability of InAs Quantum Dot Lasers on Silicon Substrates. In Proceedings of the 2019 IEEE Photonics Conference, IPC 2019-Proceedings, San Antonio, TX, USA, 29 September–3 October 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019. [Google Scholar]
- Liu, A.Y.; Zhang, C.; Norman, J.; Snyder, A.; Lubyshev, D.; Fastenau, J.M.; Liu, A.W.K.; Gossard, A.C.; Bowers, J.E. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl. Phys. Lett. 2014, 104, 041104. [Google Scholar] [CrossRef]
- Liang, D.; Srinivasan, S.; Peters, J.; Fang, A.; Bowers, J.E. Demonstration of Enhanced III-V-On-Silicon Hybrid Integration by Using a Strained Superlattice as a Defect Blocking Layer. ECS Trans. 2019, 33, 421–426. [Google Scholar] [CrossRef]
- Srinivasan, S.; Julian, N.; Peters, J.; Bowers, J.E. Reliability of Hybrid Silicon Distributed Feedback Lasers. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1501305. [Google Scholar] [CrossRef]
- Black, K.A.; Abraham, P.; Karim, A.; Bowers, J.E.; Hu, E.L. Improved luminescence from InGaAsP/InP MQW active regions using a wafer fused superlattice barrier. In Proceedings of the Conference Proceedings. Eleventh International Conference on Indium Phosphide and Related Materials (IPRM’99), Davos, Switzerland, 16–20 May 1999; pp. 357–360. [Google Scholar] [CrossRef]
- Fukuda, M.; Iwane, G. Degradation of active region in InGaAsP/InP buried heterostructure lasers. J. Appl. Phys. 1985, 58, 2932–2936. [Google Scholar] [CrossRef]
- Coldren, L.A. Diode Lasers and Photonic Integrated Circuits. Opt. Eng. 1997, 36, 616. [Google Scholar] [CrossRef]
- Kurczveil, G.; Pintus, P.; Heck, M.J.R.; Peters, J.D.; Bowers, J.E. Characterization of insertion loss and back reflection in passive hybrid silicon tapers. IEEE Photonics J. 2013, 5, 6600410. [Google Scholar] [CrossRef]
- Davenport, M.L.; Skendzic, S.; Volet, N.; Hulme, J.C.; Heck, M.J.R.; Bowers, J.E. Heterogeneous silicon/III–V semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 78–88. [Google Scholar] [CrossRef]
- Davenport, M.L.; Liu, S.; Bowers, J.E. Integrated heterogeneous silicon/III–V mode-locked lasers. Photonics Res. 2018, 6, 468. [Google Scholar] [CrossRef]
- Lambert, R.W.; Ayling, T.; Hendry, A.F.; Carson, J.M.; Barrow, D.A.; McHendry, S.; Scott, C.J.; McKee, A.; Meredith, W. Facet-passivation processes for the improvement of Al-containing semiconductor laser diodes. J. Light. Technol. 2006, 24, 956–961. [Google Scholar] [CrossRef]
- Buffolo, M.; Pietrobon, M.; De Santi, C.; Samparisi, F.; Davenport, M.L.; Bowers, J.E.; Zanoni, E.; Meneghini, M. Degradation mechanisms of heterogeneous III-V/Silicon loop-mirror laser diodes for photonic integrated circuits. Microelectron. Reliab. 2018, 88–90, 855–858. [Google Scholar] [CrossRef]
- Nam, O.H.; Ha, K.H.; Kwak, J.S.; Lee, S.N.; Choi, K.K.; Chang, T.H.; Chae, S.H.; Lee, W.S.; Sung, Y.J.; Paek, H.S.; et al. Characteristics of GaN-based laser diodes for post-DVD applications. Phys. Status Solidi Appl. Res. 2004, 201, 2717–2720. [Google Scholar] [CrossRef]
- Jakubowicz, A.; Oosenbrug, A.; Forster, T. Laser operation-induced migration of beryllium at mirrors of GaAs/AlGaAs laser diodes. Appl. Phys. Lett. 1993, 63, 1185–1187. [Google Scholar] [CrossRef]
- Bulaev, P.V.; Marmalyuk, A.A.; Padalitsa, A.A.; Nikitin, D.B.; Zalevsky, I.D.; Konyaev, V.P.; Davydoa, E.I.; Shishkin, V.A.; Sapozhinikov, S.M. Reliability of carbon doped MOCVD grown InGaAs/AlGaAs high power laser diodes. In Proceedings of the CAOL’2003. 1st International Conference on Advanced Optoelectronics and Lasers. Jontly with 1st Workshop on Precision Oscillations in Electronics and Optics, Alushta, Ukraine, 16–20 September 2003; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2004; p. 231. [Google Scholar]
- Ayling, S.G.; Bryce, A.C.; Gontijo, I.; Marsh, J.H.; Roberts, J.S. A comparison of carbon and zinc doping in GaAs/AlGaAs lasers bandgap-tuned by impurity-free vacancy disordering. Semicond. Sci. Technol. 1994, 9, 2149–2151. [Google Scholar] [CrossRef]
- Jones, R.; Doussiere, P.; Driscoll, J.B.; Lin, W.; Yu, H.; Akulova, Y.; Komljenovic, T.; Bowers, J.E. Heterogeneously Integrated InP/Silicon Photonics: Fabricating fully functional transceivers. IEEE Nanotechnol. Mag. 2019, 13, 17–26. [Google Scholar] [CrossRef]
- Liu, A.Y.; Herrick, R.W.; Ueda, O.; Petroff, P.M.; Gossard, A.C.; Bowers, J.E. Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 690–697. [Google Scholar] [CrossRef] [Green Version]
- Zenari, M.; Buffolo, M.; De Santi, C.; Norman, J.; Meneghesso, G.; Bowers, J.E.; Zanoni, E.; Meneghini, M. Identification of dislocation-related and point-defects in III-As layers for silicon photonics applications. J. Phys. D Appl. Phys. 2021, 54, 8. [Google Scholar] [CrossRef]
- Kimerling, L.C. Recombination enhanced defect reactions. Solid State Electron. 1978, 21, 1391–1401. [Google Scholar] [CrossRef]
- Petroff, P.; Hartman, R.L. Defect structure introduced during operation of heterojunction GaAs lasers. Appl. Phys. Lett. 1973, 23, 469–471. [Google Scholar] [CrossRef]
- Mukherjee, K.; Selvidge, J.; Jung, D.; Norman, J.; Taylor, A.A.; Salmon, M.; Liu, A.Y.; Bowers, J.E.; Herrick, R.W. Recombination-enhanced dislocation climb in InAs quantum dot lasers on silicon. J. Appl. Phys. 2020, 128, 025703. [Google Scholar] [CrossRef]
- Selvidge, J.; Norman, J.; Salmon, M.E.; Hughes, E.T.; Bowers, J.E.; Herrick, R.; Mukherjee, K. Non-radiative recombination at dislocations in InAs quantum dots grown on silicon. Appl. Phys. Lett. 2019, 115, 131102. [Google Scholar] [CrossRef]
- Jung, D.; Herrick, R.; Norman, J.; Turnlund, K.; Jan, C.; Feng, K.; Gossard, A.C.; Bowers, J.E. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Appl. Phys. Lett. 2018, 112, 153507. [Google Scholar] [CrossRef]
- Selvidge, J.; Hughes, E.T.; Norman, J.C.; Shang, C.; Kennedy, M.J.; Dumont, M.; Netherton, A.M.; Zhang, Z.; Herrick, R.W.; Bowers, J.E.; et al. Reduced dislocation growth leads to long lifetime InAs quantum dot lasers on silicon at high temperatures. Appl. Phys. Lett. 2021, 118, 192101. [Google Scholar] [CrossRef]
- Selvidge, J.; Norman, J.; Hughes, E.T.; Shang, C.; Jung, D.; Taylor, A.A.; Kennedy, M.J.; Herrick, R.; Bowers, J.E.; Mukherjee, K. Defect filtering for thermal expansion induced dislocations in III–V lasers on silicon. Appl. Phys. Lett. 2020, 117, 122101. [Google Scholar] [CrossRef]
- Gossard, A.C.; Shang, C.; Hughes, E.; Selvidge, J.; Bowers, J.E.; Mukherjee, K.; Dumont, M.; Herrick, R.; Koscica, R.; Wan, Y.; et al. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica 2021, 8, 749–754. [Google Scholar] [CrossRef]
- Norman, J.C.; Zhang, Z.; Jung, D.; Shang, C.; Kennedy, M.J.; Dumont, M.; Herrick, R.W.; Gossard, A.C.; Bowers, J.E. The Importance of p-Doping for Quantum Dot Laser on Silicon Performance. IEEE J. Quantum Electron. 2019, 55, 2001111. [Google Scholar] [CrossRef]
- Korenev, V.V.; Savelyev, A.V.; Maximov, M.V.; Zubov, F.I.; Shernyakov, Y.M.; Kulagina, M.M.; Zhukov, A.E. Effect of modulation p -doping level on multi-state lasing in InAs/InGaAs quantum dot lasers having different external loss. Appl. Phys. Lett. 2017, 111, 132103. [Google Scholar] [CrossRef]
- Buffolo, M.; Samparisi, F.; De Santi, C.; Jung, D.; Norman, J.; Bowers, J.E.; Herrick, R.W.; Meneghesso, G.; Zanoni, E.; Meneghini, M. Physical Origin of the Optical Degradation of InAs Quantum Dot Lasers. IEEE J. Quantum Electron. 2019, 55, 1–7. [Google Scholar] [CrossRef]
- Saldutti, M.; Tibaldi, A.; Cappelluti, F.; Gioannini, M. Impact of carrier transport on the performance of QD lasers on silicon: A drift-diffusion approach. Photonics Res. 2020, 8, 1388. [Google Scholar] [CrossRef]
- Buffolo, M.; Samparisi, F.; Rovere, L.; De Santi, C.; Jung, D.; Norman, J.; Bowers, J.E.; Herrick, R.W.; Meneghesso, G.; Zanoni, E.; et al. Investigation of Current-Driven Degradation of 1.3 μm Quantum-Dot Lasers Epitaxially Grown on Silicon. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–8. [Google Scholar] [CrossRef]
- Buffolo, M.; Rovere, L.; De Santi, C.; Jung, D.; Norman, J.; Bowers, J.E.; Herrick, R.W.; Meneghesso, G.; Zanoni, E.; Meneghini, M. Degradation of 1.3 μm InAs Quantum-Dot Laser Diodes: Impact of Dislocation Density and Number of Quantum Dot Layers. IEEE J. Quantum Electron. 2020, 57, 1–8. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buffolo, M.; De Santi, C.; Norman, J.; Shang, C.; Bowers, J.E.; Meneghesso, G.; Zanoni, E.; Meneghini, M. A Review of the Reliability of Integrated IR Laser Diodes for Silicon Photonics. Electronics 2021, 10, 2734. https://doi.org/10.3390/electronics10222734
Buffolo M, De Santi C, Norman J, Shang C, Bowers JE, Meneghesso G, Zanoni E, Meneghini M. A Review of the Reliability of Integrated IR Laser Diodes for Silicon Photonics. Electronics. 2021; 10(22):2734. https://doi.org/10.3390/electronics10222734
Chicago/Turabian StyleBuffolo, Matteo, Carlo De Santi, Justin Norman, Chen Shang, John Edward Bowers, Gaudenzio Meneghesso, Enrico Zanoni, and Matteo Meneghini. 2021. "A Review of the Reliability of Integrated IR Laser Diodes for Silicon Photonics" Electronics 10, no. 22: 2734. https://doi.org/10.3390/electronics10222734
APA StyleBuffolo, M., De Santi, C., Norman, J., Shang, C., Bowers, J. E., Meneghesso, G., Zanoni, E., & Meneghini, M. (2021). A Review of the Reliability of Integrated IR Laser Diodes for Silicon Photonics. Electronics, 10(22), 2734. https://doi.org/10.3390/electronics10222734