
Materials 2010, 3, 1782-1802; doi:10.3390/ma3031782 
 

materials 
ISSN 1996-1944 

www.mdpi.com/journal/materials 
Review 

Hybrid Integrated Platforms for Silicon Photonics 

Di Liang 1,*, Gunther Roelkens 2, Roel Baets 2 and John E. Bowers 1  

1 Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, 
93106, USA; E-Mail: bowers@ece.ucsb.edu (J.E.B.) 

2 Photonics Research Group, IMEC - Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent, 
Belgium; E-Mails: gunther.roelkens@intec.ugent.be (G.R.); roel.baets@intec.ugent.be (R.B.) 

* Author to whom correspondence should be addressed; E-Mail: dliang@ece.ucsb.edu; 
Tel.: +1-805-893-5828; Fax: +1-805-893-7990. 

Received: 1 February 2010; in revised form: 3 March 2010 / Accepted: 11 March 2010 /  
Published: 12 March 2010 
 

Abstract: A review of recent progress in hybrid integrated platforms for silicon photonics 
is presented. Integration of III-V semiconductors onto silicon-on-insulator substrates based 
on two different bonding techniques is compared, one comprising only inorganic materials, 
the other technique using an organic bonding agent. Issues such as bonding process and 
mechanism, bonding strength, uniformity, wafer surface requirement, and stress 
distribution are studied in detail. The application in silicon photonics to realize high-
performance active and passive photonic devices on low-cost silicon wafers is discussed. 
Hybrid integration is believed to be a promising technology in a variety of applications of 
silicon photonics. 
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1. Introduction 

Prior to the invention of integrated circuits, methods were developed to integrate different 
materials, aiming to utilize advantages from each material simultaneously. This idea was advanced 
along with the progress of semiconductor industry. Wafer bonding represents one of oldest and the 
most important approaches to realize this goal, especially when its basic criteria: clean, mirror-
polished, flat surfaces [1] become easy to meet today. Present microelectronic circuit integration on 
silicon substrates is reaching practical bottlenecks, primarily in data transmission bandwidth and 
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power consumption [2,3]. Introducing optics into conventional silicon microelectronics. is believed to 
be the future path of integrated circuits [3] and other new emerging applications for silicon photonics. 
Wafer bonding has also found its new application in these technology revolutions besides 
demonstrated examples, such as hybrid light emitting diodes, vertical-cavity surface-emitting lasers, 
photodetectors, optical micro-electro-mechanical systems, and sensors, etc. [4].  

Integration of GaAs and InP, the flagship substrate materials of photonics, and silicon, the 
undisputed material of choice in electronics, has been well studied. While they have naturally been 
attractive material candidates for integration over decades, they have only rarely been successfully 
integrated together. Physically, the large mismatch in lattice constant and thermal expansion 
coefficient (TEC) make monolithic integration very difficult. Wafer bonding-based hybrid integration 
[4] is not limited by lattice mismatch but still needs to tackle the TEC mismatch issue. 

In this paper we review three low-temperature wafer bonding techniques that have been used to 
demonstrate InP-on-silicon hybrid platform and heterogeneous platform, both recently enabling high-
performance photonic devices. The first two bonding methods are O2 plasma-assisted and SiO2 
covalent direct bonding, both sharing similar bonding mechanism and falling into molecule (or 
hydrophilic) bonding category. Since only inorganic materials are involved in the integration process, 
we discuss them in the inorganic-to-inorganic bonding section (section 2). The third method uses 
polymer as an adhesive to “glue” silicon and III-V wafers together, and will be discussed in the 
organic-to-inorganic bonding section (section 3). Finally, two hybrid platforms for silicon photonic 
applications are briefly introduced in section 4. For more detail information on these platforms please 
see references [5,6]. 

2. O2 Plasma-Assisted/SiO2 Covalent Direct Bonding  

For conventional direct bonding, high-temperature is typically required to strengthen the bonding. It 
is therefore often referred to as “fusion bonding”. In other bonding applications, this has proven highly 
effective, however special process development is required when a high-temperature anneal is strictly 
prohibited in III-V-to-silicon bonding. O2 plasma surface treatment emerged as an attractive approach 
to obtain high bonding strength under a low-temperature (<400 °C) anneal [7,8]. Its bonding 
mechanism is discussed below. SiO2 covalent bonding, the dominant process to fabricate 
microelectronics-grade silicon-on-insulator (SOI) wafers up to 300 mm [9], is a relatively old 
approach, but with careful surface treatment [10–13], can also be modified to meet the same low 
temperature, high strength criterion.  

2.1. Bonding process flow and mechanism 

Figure 1 shows the schematic process flow of the O2 plasma-assisted and SiO2 covalent wafer 
bonding. After rigorous sample cleaning and close microscopic inspection, the native oxide on SOI 
and InP are removed in standard buffered HF solution and NH4OH (39%), respectively, resulting in 
clean, hydrophobic surfaces. In O2 plasma-assisted process, the samples then undergo an O2 plasma 
surface treatment to grow an ultra-thin layer of plasma oxide (~15 nm) [14], which leads to very 
smooth (RMS roughness <0.5 nm) hydrophilic surfaces [15]. The Si-O-Si bonds of the oxide  
(SOI side) are found to be more reactive than conventional oxides formed in a standard RCA-1 
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cleaning process or other hydrophilic wet-chemical treatment, and have a higher readiness to break and 
form new bonds [16]. O2 energetic ion bombardment also acts as a final cleaning step, efficiently 
removing hydrocarbons and water related species on the sample surface.  

Figure 1. Schematic process flow for O2 plasma-assisted and SiO2 covalent wafer bonding. 

 
 

For SiO2 covalent direct bonding, a clean hydrophilic surface comes by depositing SiO2 on both 
surfaces, (e.g., plasma-enhanced chemical vapor deposition (PECVD) SiO2) on non-Si materials or 
thermally grown SiO2 on Si. If surface RMS roughness exceeds 1 nm, which is believed to be the 
maximum surface roughness for strong direct wafer bonding in the literature [16], chemical 
mechanical polishing (CMP) is routinely employed to improve surface topography [17]. Both bonding 
methods require a final activation step to passivate the two surfaces with a high density of polar 
hydroxyl groups (-OH), bridging bonds between the mating surfaces, enabling spontaneous bonding at 
room temperature. O2 plasma-treated samples are simply dipped in deionized water and blow-dried or 
placed in a vaporized NH4OH environment. Thick SiO2-covered samples are boiled in diluted RCA-1 
solution at 75 °C for 10 minute, a step to clean and form an Si-OH-passivated surface, then blow dried. 
Similar O2 plasma treatment [18] and a quick dip in very dilute HF solution (0.025%) for 1 minute 
[12,18] has also been found to be very helpful at suppressing interfacial voids and enhances the 
ultimate bonding strength. Following immediate physical mating typically in air at room temperature, 
the bonded sample is annealed at 300 °C with external coaxial pressure (1–2 MPa) for an hour or more 
to form strong covalent bonds through the polymerization reactions in Equations (1) and (2). M in 
Equation (1) refers to metals with relative high electronegativity (e.g., In, P) [19]. After annealing and 
cooling, the InP substrate is selectively removed in a 3HCl:1H2O solution at room temperature to leave 
thin (<2 μm) InP-based epitaxial layers on Si.  

Si-OH + M-OH  Si-O-M + HOH (g) 

Si + 2H2O  SiO2 + 2H2 (g) 

(1)

(2) 
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2.2. Solutions to outgassing in hydrophilic bonding 

Equations (1) and (2) represent the fundamental polymerization reactions in Si-based hydrophilic 
direct bonding [1], i.e., inorganic-to-inorganic bonding methods in this paper. The generated gas 
byproducts of H2 and H2O [20], have been experimentally proven to be the major trapped gases at the 
bonding interface [21,22]. A significant amount of gas formation and desorption of 2–3 monolayers of 
water molecules at the bonding interface of hydrophilic wafers after room temperature mating, plus 
gaseous hydrocarbon from organic surface contamination during the anneal, can lead to high internal 
pressure [22], subsequently resulting in local debonding, i.e., interface void formation. Typically, gas 
molecules, especially at high temperatures with a small atom size such as H2, can diffuse out through 
the micoroughness at the interface gradually or enter quickly through a porous medium (such as SiO2). 
Interfacial voids can also be filled up due to native or thermal oxide viscous flow at high temperatures 
(>800 °C) [23]. An elevated temperature anneal is therefore naturally preferred for its void-free, strong 
bonding and its processing simplicity with no need of prebond surface activation. For example, 
manufacturing of commercial wafer-bonded silicon-on-insulator (SOI) wafers up to 300 mm in 
diameter [9]. However, prohibition of elevated temperature anneals results in outgassing as a major 
issue in all low-temperature hydrophilic bonding [24].  

Embedding a thick layer of porous material such as thermal SiO2 or PECVD dielectrics has been 
reported as an efficient outgassing medium for H2O and H2 diffusion and absorption [11,24], which is 
a motivation of using SiO2 covalent bonding here. However, it is not applicable for situations where 
integration with a high proximity of two mating materials is needed, or optical, electrical or thermal 
interactions between mating materials are desired. Outgassing effectiveness is also limited when an 
interfacial layer becomes thin (e.g., <500 nm).  

A vertical outgassing channel (VOC) design is therefore developed to tackle this outgassing issue 
for O2 plasma-assisted bonding, where the interfacial oxide layer is typically less than 15 nm thick. As 
illustrated in the cartoon in Figure 2(a), VOCs are essentially an array of holes with a few micrometers 
in diameter and etched through the top Si device layer to the buried oxide (BOX) layer prior to contact 
with the III-V material. The generated gas byproduct molecules, plus a small amount of trapped air 
molecules including any gaseous impurities, can migrate to the closest VOC, and can promptly be 
trapped inside by VOCs and start being absorbed by BOX. They may also gradually diffuse out 
through the BOX layer, due to its open network of only 43% of the occupied lattice space [25] and its 
large diffusion cross-section, generally 0.3–3 μm thick.  

Figure 2(b) shows the Normaski optical microscopic image of 2 μm-thick III-V epitaxial layers 
transferred onto SOI substrate. VOCs with an optimized channel spacing 50 μm and size 8 × 8 μm2 
[26] are only patterned in certain area of SOI sample highlighted by yellow dash line box. One can 
notice clear contrast between void-free VOC region and non-VOC region, where a great number of 
interfacial voids are evenly distributed. SEM cross-sectional view of a corresponding VOC with thin 
III-V expitaxial layers bonded on top is illustrated in the red dash line box of Figure 2(c), 
demonstrating intimate contact of III-V and Si with no III-V deformation above VOC. The absence 
and undercut of BOX is due to the wet etch of SiO2 hard mask in HF solution after transferring the 
VOC pattern from the hard mask to the Si device layer, and has shown no negative impact on the 
effectiveness of the VOC outgassing.  
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Figure 2. (a) Schematic cartoons of vertical outgassing channels (VOCs) on the SOI 
substrate before (top) and after (bottom) contacting InP epitaxial layers. (b) Normaski 
microscopic images of an InP-to-SOI bonded pair after 300 °C anneal for 30 min, showing 
noticeable contrast between VOC region (yellow dash line box) and non-VOC region. (c) 
SEM cross-sectional view of VOCs with InP epitaxial layers bonded on top, showing 
intimate contact with no deformation or delamination. Red dash line box highlights a 
single VOC. 

 
 

Bonding strength (or bonding surface energy) is measured by the conventional crack-opening 
method [27]. An attempt was made to wedge a thin blade into the bonding interface to separate the  
III-V from Si, so that one could calculate the bonding strength from the distance of separation. 
However, the consistent cracking of the InP substrate from both bonding methods indicates the 
likelihood of the bonding surface energy higher than the fracture energy of bulk InP (0.7 J/m2), a 
similar case that Maszara reported in measuring hydrophilic Si-Si bonds [28]. Over 2.5 J/m2 surface 
energy was measured accurately in a SiO2 covalent bonded sample where the III-V was replaced by 
another Si wafer while keeping everything else constant [18].  

2.3. Wafer-scale integration 

Compared to heteroepitaxial growth, wafer bonding embraces a major advantage of low-cost wafer-
scale integration, as long as bonding criteria are satisfied. As mentioned before, up to 300 mm high-
quality SOI wafers for microelectronics are routinely manufactured by wafer bonding [9]. Upon 
solving outgassing issues in low-temperature bonding, wafer-level III-V-to-Si bonding is also 
attainable. For typical small bonded pieces (~cm2), Normaski optical microscopy is sufficient to spot 
any interfacial voids as small as sub-μm in diameter after removing the thick InP substrate. High-
resolution automatic scanning acoustic microscopy (SAM) is more convenient for wafer-scale 
interface inspection. Figures 3(a) and (b) show wafer-scale SAM images of 50 and 100 mm in 
diameter O2 plasma-assisted bonded wafers, respectively, with sub-μm microscopic resolution (X-axis: 
0.5 μm, Y-axis: 0.25 μm, Z-axis: 0.5 μm) [14]. Only few relatively large voids (highlighted by red 
circles) are observed. They are close to the wafer edge and likely from surface particles collected 
during manual wafer handling. No uniformly distributed gas byproducts-resulted voids are found, 
which is compatible with inspection in Normaski microscopy in selected areas [15]. Void-free bonding 
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is therefore achieved in >99% of the area. The misleading contrast and some vertical lines highlighted 
in the SAM images are from the wafer chuck related to the SAM tool.  

Figure 3. SAM images of (a) 50 mm and (b) 100 mm InP-to-Si bonded wafers. Interfacial 
voids are highlighted in red circles and yellow arrows indicate the horizontal (vertical in 
the image) scan lines and a pattern from the wafer chuck related to the tool.  

 
 
Up to 150 mm in diameter III-V-to-Si bonding, presently the largest available III-V epitaxial wafer, 

are demonstrated as well using O2 plasma-assisted and SiO2 covalent bonding methods. Figure 4(a) 
shows the photo of 150 mm in diameter thin III-V epilayers transferred onto the SOI by O2 plasma-
assisted bonding process. The processing time does not increase with increasing wafer size, provided 
that cleaning time does not vary much, which indicates the advantage of wafer-scale integration 
through wafer bonding. Over 98% area transfer and mirror-like III-V surface with a typical root mean 
square (RMS) roughness of 0.6–0.7 nm was demonstrated [15,26]. Further III-V back-end process 
proceeded to fabricate race-track ring resonator lasers on SOI substrate. After putting a layer of 300 
nm plasma-enhanced chemical vapor deposition (PECVD) SiNx at 260 °C, the wafer underwent 
standard projection photolithography and dry etch patterning of the racetrack ring laser layout arrayed 
on each device die (2 × 2 cm2). Wet etching then removed a surface InGaAs layer in exposed areas, 
giving us access to PL response from active region [14]. No extra delamination was observed during 
thermal cycling and wet processing, indicating robust III-V-to-Si bonding. A 150 mm diameter SiO2 
covalent bonded wafer is also exhibited in Figure 4(b), where thin Si devices were transferred onto InP 
substrate for CMOS-on-III-V mixed material integration [17]. The infrared (IR) image in Figure 4(b) 
shows void-free interface and transferred SOI CMOS circuit. 
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Figure 4. (a) Photograph of processed 150 mm diameter O2 plasma-assisted bonded wafer 
showing individual device dies. (b) IR image of 150 mm SiO2 covalent bonded wafer with 
CMOS devices successfully transferred.  

 
 

2.4. Epitaxial transfer quality characterization in wafer-scale integration 

In order to study the inevitable thermal stress from 300 °C anneal due to mismatch of InP and Si 
thermal expansion coefficients, epitaxial transfer quality of the 150 mm diameter bond is 
characterized by high-resolution x-ray diffraction (XRD) rocking curve measurement. The (004) 
diffraction peak from 1.5 μm-thick InP cladding layer is used as the reference. A wafer map 
composed of 81 Omega scans (0.2°) to a 9 × 9 matrix (step size: 12 mm) is illustrated in Figure 5(a) 
for determining the surface warpage, so that bonding-induced strain can be extracted later. A 
maximum peak position shift of 0.188° in Omega angle at two points along the horizontal direction 
(96 mm long) results in a bowing of 41.68 μm, leading to an approximate 64.12 μm warpage across 
the 150 mm diameter wafer as shown in Figure 4(b). This is comparable to the maximum 80 μm bow 
of the commercial UnibondTM SOI substrate from SOITEC. Thermal stress can be calculated through 
Equation (3),  

where Es, vs and ρ represent the Young’s modulus (ESi = 98 GPa), Poisson ratio (vSi = 0.29) and 
surface curvature (ρ = 64.12 μm) of Si substrate since all stress is concentrated in III-V after InP 
substrate removal. With a 2 μm thick III-V epitaxial layer (tf = 2 μm) and a 625 μm thick SOI wafer 
(ts = 625 μm), and taking the measured original SOI wafer bowing of 40 μm into account, the 
calculated stress is 17 MPa tensile, much smaller than typical 200 nm PECVD SiO2 or SiNx-induced 
thin film stress in a range of 20–200 MPa. It is noted that the observed warpage is parallel to the Si 
major flat direction, because the removal of the Si wafer at the wafer major flat resulted in a weak 
direction that is easiest to bend. The same wafer map measurement with a wafer rotated 90° at the 
measurement plane (data not shown) confirms the warpage direction. XRD characterization therefore 
indicates a mirror-like, flat, low-strain epitaxial transfer.  
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Figure 5. (a) Wafer warpage contour composed of 81 Omega scans at a 9 × 9 matrix with 
12 mm step size. (b) Schematic warpage of bonded wafer pair with a bowing of 64.12 μm 
with a corresponding surface radius of 27.64 m based on the largest omega angle 
difference measured in (a). 

 
 

3. Adhesive Wafer Bonding Technology  

Next to the direct bonding approach described in the previous section, adhesive bonding can also be 
used to transfer III-V epitaxial layers onto a SOI waveguide circuit. We will start this section with a 
literature review of the various types of thermosetting adhesives, to come to the selection of DVS-
BCB for this particular application. Thermosetting adhesives are required, since the post-bonding 
processing temperatures for III-V optoelectronic components can go up to 400 °C, excluding 
thermoplastic and elastomer bonding agents. The literature review is not exhaustive. An extensive 
review of adhesive wafer bonding can be found in [29]. We will discuss the use of polyimides, 
epoxies, spin-on-glasses, photoresist, SU-8 and DVS-BCB. In [30], Dupont polyimide PI2610 was 
tried as an adhesive, to bond two 100 mm diameter silicon wafers. Large unbounded areas resulted due 
to the presence of voids at the bonding interface. This is attributed to the creation of byproducts during 
the imidization-process, which get trapped at the bonding interface, and to the large volume shrinkage 
upon cure, which might affect the adhesion due to high stresses in the polymer coating. In [31], a 
silver-loaded conductive epoxy (EpoTekH20E) was used to bond 50 mm in diameter GaAs wafers. 
The bonding was performed at 120 °C. In this experiment, post-bonding processing was performed: 
the original GaAs substrate was removed using a combination of mechanical grinding and chemical 
etching and LEDs were processed in the bonded epitaxial layer. The thickness of the bonding layers 
used in the experiments was not specified. Spin-on glass (SOG) was used in [32] to bond 1 cm2 
InP/InGaAsP vertical-cavity surface-emitting laser (VCSEL) epitaxial layer structures to a silicon 
substrate. The bonding layer thickness varied from a few tens of nanometer to 300 nm by varying the 
pressure exerted on the wafer stack. In this case, the spin-on glass was spin coated very slowly in order 
to remain liquid after spin coating. After mating of the surfaces, a bonding pressure between 10 and  
60 kPa was applied on the wafer stack. The wafer stack was cured at 400 °C. Two types of spin-on 
glass were used for the experiments: all samples bonded with silicate SOG tended to separate when 
trying to cut them using a dicing saw. Experiments with siloxane SOG, spin-on glass with a higher 
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organic content, were successful. This difference is attributed to the large shrinkage of the silicate 
SOG upon cure, resulting in a large film stress, and the low cracking resistance of the silicate SOG. In 
[33], 100 mm and 150 mm silicon wafers were bonded using SOG. A high bonding strength was 
measured after room temperature bonding, due to the chemistry at the SOG/silicon interface, resulting 
in bonding at room temperature. Thermal annealing was performed at 200 °C for 18 hours. Defect-free 
bonded wafer pairs were obtained. This process was also used for the fabrication of GaAs/silicon 
heterostructures. Annealing temperatures were limited to 225 °C in order to avoid debonding and 
shattering of the GaAs wafer. After thinning the GaAs substrate to a remaining thickness of 10 µm, the 
bonded pair was heated to 450 °C without debonding or void generation at the bonding interface. In 
[30], 1.5 to 2.3 µm thick (thermosetting) Shipley photoresist S1818 layers were used to bond 100 mm 
silicon wafers. The bonding was performed at 120 °C using 300 kPa bonding pressure. In the 
experiment, no post-bonding temperature excursions were made. The reported bonding strength was 
low compared to other thermosetting adhesives used, like polyimide and DVS-BCB. In [34],  
20–45 µm thick SU-8 epoxy layers (thermosetting) were used to bond a 100 mm silicon wafer onto a 
100 mm Pyrex wafer. The bonding was performed at 120 °C using 300 kPa bonding pressure. In the 
experiment, no post-bonding temperature excursions were made. From this review, it is clear that a 
whole myriad of thermosetting adhesives can be used for wafer bonding applications. 

In the literature, there are many reports available on the use of DVS-BCB (divinylsiloxane-bis-
benzocyclobutene, a thermosetting polymer) as an adhesive bonding agent [29,30,35–38]. DVS-BCB 
is superior in terms of high bonding strength and bonding quality (due to the fact that no by-products 
are created during curing), its high degree of planarization and its resistance to all sorts of chemicals 
used in III-V processing. In the subsequent section, we will outline the DVS-BCB adhesive wafer 
bonding process for III-V epitaxial layer transfer to a silicon-on-insulator waveguide circuit. Some 
important properties of DVS-BCB are outlined in Table 1 [35]. 

Table 1. Overview of the DVS-BCB die-to-wafer bonding process [35]. 

Electrical properties 

Dielectric constant 2.5 at 10 GHz 

Dissipation factor 0.002 at 10 GHz 

Breakdown voltage 5.3 MV/cm 

Optical properties 

Refractive index 1.543 at 1.55 µm 

Optical loss <0.1 dB at 1.55 µm 

Mechanical properties 

Tensile modulus 2.9 GPa 

Intrinsic stress 28 MPa 

Tensile strength 89 MPa 

Poisson ratio 0.34 

Shrinkage upon cure 0.05 
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Table 1. Cont. 
Thermal properties 

Glass transition temperature >350 °C 

Thermal conductivity 0.29 W/mK 

Thermal expansion coefficient 42 ppm/K 

Other properties 

Planarization Very good 

Moisture uptake Very low 

 
3.1. DVS-BCB adhesive die-to-wafer bonding 

The DVS-BCB adhesive die-to-wafer bonding process is schematically outlined in Figure 6. The 
InP/InGaAsP epitaxial layer structures are cleaved into individual dies (typical dimensions are in the 
range of 25 mm2−100 mm2) and are temporarily mounted on a glass carrier using either a 
thermoplastic adhesive or thermal release tape. The mounting on a glass carrier serves two purposes: 
first of all it allows easy handling of the III-V dies during cleaning of the die surface. Secondly, the 
glass carrier allows mounting multiple III-V dies at the same time, thereby allowing multiple die-to-
wafer bonding. The most important part of the die-to-wafer bonding procedure consists of the cleaning 
of the silicon-on-insulator waveguide wafer and III-V dies.  

Figure 6. Overview of the DVS-BCB die-to-wafer bonding process. 

 
 

The SOI waveguide wafer is cleaned using a Standard Clean 1 solution (i.e., a mixture of NH4OH, 
H2O2 and H2O). This cleaning step lifts off particles from the SOI wafer surface and renders the 
surface hydrophilic. The III-V die is cleaned, while mounted on the glass carrier wafer, by selectively 
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removing a sacrificial InP/InGaAs layer pair using HCl and H2SO4:3H2O2:H2O, respectively. This step 
removes organic contamination from the III-V die surface (which is present due to the mounting of the 
die on the carrier) and also lifts off particles from the die surface, which are generated during the 
cleaving of the III-V die. Following cleaning, an adhesion promoter is spin coated on the SOI 
waveguide circuit (AP-3000, Dow Chemicals), after which the DVS-BCB oligomer solution is spin-
coated on the III-V die. Since ultra-thin bonding layers (typically sub 100 nm) are required for a good 
optical and thermal coupling between the III-V and SOI in the hybrid device platforms in Section 4, 
commercially provided DVS-BCB oligomer solutions (Dow Chemicals) need to be diluted using 
mesitylene, to achieve the required bonding layer thickness. Although the topography of the SOI 
waveguide wafer (220 nm) is larger than the required spacing between the top of the SOI waveguide 
and the III-V epitaxial layer structure, still a good planarization can be achieved. After spin coating, 
the SOI is heated to 150 °C for 1 minute in order to evaporate the remaining mesitylene solvent in the 
spin coated DVS-BCB film. This is required to avoid the generation of voids at the bonding interface. 
After the evaporation of the mesitylene, the III-V die is attached, epitaxial layers down, to the SOI 
waveguide circuit. This can be done either in cleanroom air (manually) or in the vacuum chamber of a 
commercial automatic wafer bonding tool. The latter option gives better results in terms of uniformity 
and repeatability. After die attachment at 150 °C, the III-V/DVS-BCB/SOI stack is cured at 250 °C. 
Upon curing, the benzocyclobutene ring thermally opens to form o-quinodimethane. This very reactive 
intermediate readily undergoes a so-called Diels-Alder reaction with an available vinylsiloxane group 
to form a three-dimensional network structure as is shown in Figure 7 [35]. As is clear from this 
reaction mechanism, no byproducts are created during the polymerization. Since no by-products are 
created, the result is a void free bond.  

Figure 7. Polymerization reaction of the DVS-BCB monomer. 

 
 

After bonding, the original InP growth substrate is removed using grinding and selective wet 
chemical etching using the same 3HCl:H2O solution and an InGaAs etch stop layer. This leaves the 
epitaxially grown III-V layer stack attached to the SOI waveguide circuit. SEM cross-sections of the 
fabricated layer stacks and a top-down view of a transferred epitaxial layer to a silicon-on-insulator 
substrate are shown in Figure 8. This figure illustrates the versatility of the DVS-BCB adhesive 
bonding process, since a whole range of bonding layer thicknesses (from 50 nm up to a few 
micrometer) can be achieved. 
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Figure 8. SEM cross-section images of transferred III-V layer stacks and a top-down view. 

 
 

The amount of strain that is generated in the inorganic-organic layer stack is also studied. This 
strain originates from the difference in thermal expansion coefficient between the silicon substrate, the 
III-V epitaxial layer and polymer interfacial layer. The strain of the bonded layer stack as a function of 
temperature (after curing the DVS-BCB bonding layer at 250 °C for 1 hour) was mapped out by 
monitoring the bow of the wafer stack.  

Figure 9. Curvature of the bonded stack as a function of temperature. 

 
 

Similar to the wafer bowing in Figure 5, the curvature of the adhesive bonded stack reveals the 
strain in the transferred epitaxial layer. A linear dependence as a function of temperature is observed in 
Figure 9. At room temperature, the III-V epitaxial film is under tensile stress. Around 230 °C, the stack 
is stress-free, since around this temperature during the curing cycle, the DVS-BCB fixes the III-V 
layer. Above this temperature compressive strain is observed in the transferred epitaxial layer. From 
this curvature, the remaining strain in the transferred epitaxial layer can be calculated. Stress levels at 
room temperature up to 40 MPa are obtained, which correspond to a strain of 0.04%. This is 
sufficiently low from an optical point of view as the influence of the stress on the band shifting is 
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acceptable. Comparing the simulation results with the stress levels needed to induce dislocations in the 
layer structure, elevating the temperature after bonding to temperatures higher than 400 °C could 
create dislocations in the InP layer, which should be avoided. 

4. III-V-on-Si Photonic Device Platforms 

Two recently demonstrated III-V-on-Si device platforms, primarily for building photonic integrated 
circuits on silicon substrate, have been developed. One is named as hybrid silicon platform, which is 
based on the O2 plasma-assisted direct bonding technique and developed by a joint effort between 
University of California-Santa Barbara (UCSB) in the U.S.A. and Intel Corporation. The other is 
called heterogeneous III-V/SOI platform, which is based on the adhesive wafer bonding technique and 
developed by Ghent University in Belgium. Unlike the conventional way to attach the bulky (>100 μm 
thick) individual III-V lasers onto finished Si circuits, they both involve transfer of as-grown thin  
(<2 μm thick) crystalline III-V thin film to a SOI host substrate. The Si is typically patterned prior to 
the transfer, and the III-V films are processed after transfer allowing for the use of standard 
lithography based patterning techniques to fabricate III-V optoelectronic devices. A fraction of light 
generated in III-V is then evanescently coupled to the Si waveguide underneath. 

4.1. Hybrid silicon platform  

Figure 10 highlights the critical steps to form a hybrid Si platform. The hybrid structure is 
comprised of III-V epitaxial layers transferred to a SOI waveguide through a low-temperature, O2 
plasma-assisted wafer bonding process (Figure 10(a)). Upon removing the thick InP substrate 
selectively, the mesa structure to enable a carrier injection scheme similar to VCSEL devices is then 
formed on the III-V region by standard photolithography and etching (Figure 10(b)). Fabry-Perot (FP), 
Distributed-Feedback (DFB), Distributed Bragg reflector (DBR) and ring resonator structures can be 
realized easily to provide feedback for lasing. Typically, the III-V mesa width is larger than the Si 
waveguide (1–2 μm) so that the transverse mode confinement is determined by the SOI waveguide and 
not the III-V mesa. This eliminates any issues with alignment of the III-V etch to the SOI etch. 
Amplifiers and lasers have a wide III-V mesa (12 μm−14 μm) for better heat conduction and 
mechanical strength while a narrow III-V mesa (2 μm−4 μm) is chosen for detectors and modulators 
for high speed operation with a reduced capacitance. H+ proton implantation is used if carrier 
confinement or electrical isolation between integrated devices is necessary. In the case of a wide III-V 
mesa, proton implantation is employed to confine the current flow for better overlap with the optical 
mode (Figure 10(c)). Detailed fabrication steps can be found in Ref. [39]. The general structure of III-
V layers consists of a p-type InGaAs contact layer, a p-type InP cladding, an optional p-type separated 
confinement heterostructure (SCH) layer, an undoped multiple quantum well layer, n-type contact 
layer, and n-type superlattice bonding layers. The employment of superlattice bonding layers is for 
reducing and blocking the TEC mismatch-induced defects propagating into the active region [14,40]. 
Examples of epitaxial structures for electrically-pumped lasers can be found in Refs. [39,41].  
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Figure 10. A simplified fabrication process to form the hybrid Si device platform. (a) 
Bonding of the III-V wafer to the patterned SOI wafer. (b) InP substrate removal and mesa 
etching. (c) Current confinement and metal contact formation. 

 
 

Due to the similar refractive index of Si and III-V materials, the optical mode in this hybrid 
waveguide lies both in the Si waveguide and III-V mesa. A unique feature of this platform is the 
flexibility to widely adjust optical confinement factors in Si and III-V layers. A high confinement 
factor is useful for low threshold in lasers, high gain, low noise amplification in optical amplifiers and 
high quantum efficiency in photodetectors. A low confinement factor is useful for high power lasers, 
high saturation current amplifiers and high power photodetectors. In many cases, the best performance 
can be obtained by changing the confinement factor along the length of the device. For example, 
changing the confinement factor from high to low results in high gain, low noise, high saturation 
power optical amplifiers. Changing the confinement factor from low to high is useful for high 
saturation current, high quantum efficiency photodiodes. This can be implemented in the hybrid silicon 
platform by changing the width of the waveguide (Figure 11; calculated from Beam Propagation 
Method (BPM) simulations). The Si confinement factor is an important parameter in determining 
coupling efficiency when the device is integrated with Si passive devices. Mode profiles from different 
waveguide widths (W = 1, 1.5 and 2.5 μm) in Figure 11 show that narrowing the Si waveguide pushes 
the mode up to the III-V, resulting in a large III-V confinement factor, while a wide Si waveguide 
accommodates a larger portion of the optical mode. A taller Si waveguide also leads to larger Si 
confinement factor. This unique characteristic therefore allows different confinement factors in 
different regions of the hybrid waveguide for the same III-V epitaxial structure, catering to the 
requirements of different components on the same chip.  
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Figure 11. Mode profiles with different waveguide widths. The height of the Si waveguide 
is fixed at 0.7 μm [42]. 

 
 

4.2. Heterogeneous III-V/SOI platform  

Another hybrid III-V-on-Si platform recently developed by Ghent University possesses similar 
device structure, though the III-V material and the Si waveguide perform relatively independent 
functions [43]. A three-dimensional schematic is shown in Figure 12 to depict the photon generation, 
optical feedback and coupling to the Si waveguide below [43]. The III-V epitaxial layer transfer is 
achieved by thermosetting polymer divinylsiloxane-benzocyclobutene (DVS-BCB) adhesive bonding 
[43] as discussed in section 3.1. A typical DVS-BCB layer is on the order of several hundreds of 
nanometers with a refractive index ~1.5 at λ = 1.55 μm. A relatively thick low-index medium between 
III-V and Si prevents photons generated in the III-V active region from coupling into the Si waveguide 
instantly. Lasing is achieved through the gain provided by a III-V active region and reflection at the 
etched laser facets. As the stimulated emission leaves the edge of the laser diode, an additional 
coupling structure is required for efficient coupling to the SOI waveguide. An optimal adiabatic 
inverted taper structure is employed to achieve good coupling efficiency and fabrication tolerance. The 
concept of the inverted adiabatic structure is to butt-couple the bonded laser diode to a polymer 
waveguide, after which the optical mode is gradually transformed into that of the SOI waveguide by 
increasing the cross-sectional area of the Si waveguide. The polymer waveguide is self-aligned to the 
laser ridge, eliminating a possible source of coupling efficiency reduction arising from the 
misalignment between the waveguides. The Si inverted taper structure is buried underneath the 
polymer waveguide. The inverted taper tip width has to be sufficiently small in order for the 
fundamental optical waveguide mode at the tip to resemble the waveguide mode of the polymer 
waveguide closely [44]. It is noted that recent work has enabled the 50 nm thick DVS-BCB layer for 
strong coupling. That results in more similar operation principle to hybrid silicon platform above. The 
formation of III-V mesa and electrodes are similar to the platform.  

The two III-V-on-Si hybrid platforms which are enabled by inorganic-inorganic or inorganic-
organic wafer bonding techniques have led to a series of active components for Si photonic integration 
circuits recently. They include Fabry-Perot cavity [39,44], racetrack ring [41], mode-lock [45], micro-
disk [46], distributed feedback [47], distributed bragg reflector [48] and micro-ring [49] lasers, 
amplifiers [50], PIN [51] and metal-semiconductor-metal [52] photodetectors, electroabsorption [53], 
Mach-Zehnder interferometer phase [54] and micro-disk [55] modulators, high-speed switches [56], 
etc. More advanced integration circuits have also started being demonstrated [52,57]. It is noted that in 
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addition to the UCSB-Intel research team and the European research team led by Ghent University, 
several groups worldwide have also made important contributions to this hybrid integration approach 
to active Si photonics [58–61]. This is important to developing multi-functional Si photonic integrated 
chips for a variety of immediate and emerging applications. 

Figure 12. Schematic of the layout of the optical coupling scheme for efficient and 
fabrication tolerant coupling between a bonded Fabry-Perot laser diode and an underlying 
SOI waveguide circuit using an inverted adiabatic taper approach [44].  

 
 
4. Conclusions 

In this paper we have reviewed low-temperature inorganic-to-inorganic (i.e., O2 plasma-assisted 
and SiO2 covalent direct bonding) and inorganic-to-organic (i.e., DVS-BCB adhesive bonding) wafer 
bonding methods. Both techniques successfully enabled two similar III-V-on-Si hybrid platforms for 
high-performance Si photonic integrated circuits. Table 1 summarizes characteristics associated with 
the two bonding methods. Both methods can generate strong, low stress and stable bonding under low 
temperature process requirement. Compared to direct bonding, adhesive bonding doesn’t require 
special surface treatment and is able to tolerate some surface topography, depending on interfacial 
polymer chemistry and layer thickness. This results in a relatively simple process. Direct bonding, 
however, embraces the inherent advantage of better integration proximity, which benefits optical 
coupling and heat transportation between dissimilar materials for the hybrid III-V-on-Si photonic 
integration platform in particular, provided that the outgassing problem is sufficiently minimized or 
eliminated. Both techniques have paved a way to integrate dissimilar materials without compromising 
their own properties, and are by no means restricted to III-V-on-Si integration here. The bonding 
technique adoption is determined by application and specific device design eventually. 
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Table 1. Basic bonding characteristic of direct bonding and adhesive bonding. 

Bonding characteristic Molecule bonding Adhesive bonding 
Bonding strength (<400 °C) High High 
Process complexity Medium Low 
Tolerance to surface defects, 
roughness and contamination 

Low High−medium 

Bonding-induced strain Low Low 
Integration proximity  High High–medium 
Intrinsic outgassing problem High Low 
Uniformity  High High–medium 
Stability  High High 
Scalability  High High 
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