Short-Term to Long-Term Plasticity Transition Behavior of Memristive Devices with Low Power Consumption via Facilitating Ionic Drift of Implanted Lithium
Abstract
:1. Introduction
2. Experimental Details
2.1. Memristive Devices’ Fabrication
2.2. Characterization and Device Performance Measrument
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Von Neumann, J. The Computer and the Brain; Yale University: New Haven, CT, USA, 2012. [Google Scholar]
- Jaiswal, A.; Charkraborty, I.; Agrawal, A.; Roy, K. 8T SRAM cell as a multibit dot-product engine for beyond Von Neumann computing. IEEE Tran. VLSI Syst. 2019, 27, 2556–2567. [Google Scholar] [CrossRef] [Green Version]
- Zanotti, T.; Puglisi, F.M.; Pavan, P. Smart logic-in-memory architecture for low-power non-von neumann computing. IEEE J. Electron Devices Soc. 2020, 8, 757–764. [Google Scholar] [CrossRef]
- Yao, P.; Wu, H.; Gao, B.; Tang, J.; Zhang, Q.; Zhang, W.; Yang, J.J.; Qian, H. Fully hardware-implemented memristor convolutional neural network. Nature 2020, 577, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hu, M.; Li, Y.; Jiang, H.; Ge, N.; Montgomery, E.; Zhang, J.; Song, W.; Dávila, N.; Graves, C.E.; et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 2018, 1, 52–59. [Google Scholar] [CrossRef]
- Li, P.; Li, C.; Wang, Z.; Li, Y.; Juian, H.; Song, W.; Rao, M.; Zhuo, Y.; Upadhyay, N.K.; Barnell, M.; et al. Three-dimensianl memeristor circuits as complex neural networks. Nat. Electron. 2020, 3, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Wang, Z.; Kim, K.M.; Wu, H.; Ravichandran, V.; Xia, Q.; Hwang, C.S.; Yang, J.J. An artificial nociceptor based on a diffusive memristor. Nat. Commun. 2018, 9, 417. [Google Scholar] [CrossRef] [PubMed]
- Pérez, E.; Pérez-Ávila, A.J.; Romero-Zaliz, R.; Mahadevaiah, M.K.; Quesada, E.P.B.; Roldán, J.B.; Molinos, F.J.; Wenger, C. Optimization of Multi-Level Operation in RRAM Arrays for In-Memory Computing. Electronics 2021, 10, 1084. [Google Scholar] [CrossRef]
- Roy, K.; Jaiswal, A.; Panda, P. Towards spike-based mechine intelligence with neuromorphic computing. Nature 2019, 575, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Shastri, B.J.; Tait, A.N.; Ferreira de Lima, T.; Pernice, W.H.; Bhaskaran, H.; Wright, C.D.; Prucnal, P.R. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 2021, 15, 102–114. [Google Scholar] [CrossRef]
- van De Burgt, Y.; Melianas, A.; Keene, S.T.; Malliaras, G.; Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 2018, 1, 386–397. [Google Scholar] [CrossRef]
- Anzueto-Ríos, Á.; Gómez-Castañeda, F.; Flores-Nava, L.M.; Moreno-Cadenas, J.A. Approaching Optimal Nonlinear Dimensionality Reduction by a Spiking Neural Network. Electronics 2021, 10, 1679. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, Y.; Chen, J.; Wang, J.; Zhou, Y.; Han, S.T. Semiconductor quantum dots for memories and neuromorphic computing systems. Chem. Rev. 2020, 120, 3941–4006. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Q.; Ni, Z.; Li, Q.; Liu, H.; Yang, Y.; Wang, L.; Ran, Y.; Guo, Y.; Hu, W.; et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv. Mater. 2018, 30, 1803961. [Google Scholar] [CrossRef]
- Kwon, K.C.; Zhang, Y.; Wang, L.; Yu, W.; Wang, X.; Park, I.H.; Choi, H.S.; Ma, T.; Zhu, Z.; Tian, B.; et al. In-plane ferroelectric tin monosulfide and its application in a ferroelectric analog synaptic device. ACS Nano 2020, 14, 7628–7638. [Google Scholar] [CrossRef] [PubMed]
- Fukami, S.; Ohno, H. Perspective: Spintronic sysnapse for artificial neural network. J. Appl. Phys. 2018, 124, 151904. [Google Scholar] [CrossRef] [Green Version]
- Cobley, R.A.; Hayat, H.; Wright, C.D. A self-resetting spiking phase-change neuron. Nanotechnology 2018, 29, 195202. [Google Scholar] [CrossRef]
- La Barbera, S.; Ly, D.R.; Navarro, G.; Castellani, N.; Cueto, O.; Bourgeois, G.; De Salvo, B.; Nowak, E.; Querilioz, D.; Vianello, E. Narrow Heater Bottom Electrode-Based Phase Change Memory as a Bidirectional Artificial Synapse. Adv. Electron. Mater. 2018, 4, 1800223. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Sun, W.J.; Wang, J.; He, J.H.; Li, H.; Xu, Q.F.; Li, N.J.; Chen, D.Y.; Lu, J.M. All-Inorganic Ionic Polymer-Based Memristor for High-Performance and Flexible Artificial Synapse. Adv. Func. Mater. 2020, 30, 2004245. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J.S. Designing artificial sodium ion reservoirs to emulate biological synapses. NPG Asia Mater. 2020, 12, 62. [Google Scholar] [CrossRef]
- Bae, J.; Kobayashi, N.P. Resistive switching device with highly-asymmetric current voltage characteristics: Its error analysis and new design parameter. Semicond. Sci. Technol. 2019, 34, 025007. [Google Scholar] [CrossRef]
- Khan, M.U.; Hassan, G.; Bae, J. Non-voltatile resistive switching based on zirconium dioxide:poly(4-vinyphenol) nano-composite. Appl. Phys. A 2019, 125, 378. [Google Scholar] [CrossRef]
- Sun, W.; Gao, B.; Chi, M.; Xia, Q.; Yang, J.J.; Qian, H.; Wu, H. Understanding memristive switching via in situ characterization and device modeling. Nat. Commun. 2019, 10, 3453. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Zhao, Q.; Chen, A.P.; Zhao, J.; Zhou, Z.; Wang, J.; Wang, H.; Zhang, L.; Li, X.; Xiao, Z.; et al. Vacancy-Induced Synaptic Behavior in 2D WS2 Nanosheet–Based Memristor for Low-Power Neuromorphic Computing. Small 2019, 15, 1901423. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Qin, L.; Zeng, Q.; Qiu, X.; Huang, R. Probing nanoscale oxygen ion motion in memristive systems. Nat. Commun. 2017, 8, 15173. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.; Baek, J.-H.; Ren, F.; Pearton, S.J.; Lee, G.-H.; Kim, J. Artificial neuron and synapse devices based on 2D materials. Small 2021, 17, 2100640. [Google Scholar] [CrossRef]
- Kim, M.K.; Lee, J.S. Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano 2018, 12, 1680–1687. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Lu, Y.C.; Hung, Y.J. Controlling the nanoscale gaps on silver Island film for efficient surface-enhanced Raman spectroscopy. Nanomaterials 2019, 9, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, K.P.; Kwabi, D.G.; Quinlan, R.A.; Mansour, A.N.; Grimaud, A.; Lee, Y.L.; Lu, Y.C.; Shao-Horn, Y. Thermal stability of Li2O2 and Li2O for Li-air batteries: In situ XRD and XPS studies. J. Electrochem. Soc. 2013, 160, A824. [Google Scholar] [CrossRef]
- Wood, K.N.; Teeter, G. XPS on Li-battery-related compounds: Analysis of inorganic SEI phases and a methodology for charge correction. ACS Appl. Energy Mater. 2018, 1, 4493–4504. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Li, L.; Zhao, R.; Zhao, J.; Zhou, Z.; Wang, J.; Wang, H.; Tang, B.; Lu, C.; Lou, J.; et al. A Pure 2H-MoS2 Nanosheet-Based Memristor with Low Power Consumption and Linear Multilevel Storage for Artificial Synapse Emulator. Adv. Electron. Mater. 2020, 6, 1901342. [Google Scholar] [CrossRef]
- Wu, C.; Kim, T.W.; Choi, H.Y.; Strukov, D.B.; Yang, J.J. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability. Nat. Commun. 2017, 8, 752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.Y.; Chen, J.; Chen, P.H.; Chang, T.C.; Wu, Y.; Eshraghian, J.K.; John, M.; Yoo, S.M.; Wang, Y.-H.; Chen, W.-C.; et al. Adaptive synaptic memory via lithium ion modulation in RRAM devices. Small 2020, 16, 2003964. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Shen, X.; Fu, J.; Gao, Z.; Wan, X.; Liu, X.; Hu, E.; Xu, J.; Tong, Y. Electrical Properties and Biological Synaptic Simulation of Ag/MXene/SiO2/Pt RRAM Devices. Electronics 2020, 9, 2098. [Google Scholar] [CrossRef]
- Jeon, Y.J.; An, H.; Kim, Y.J.; Jeon, Y.P.; Kim, T.W. Highly reliable memristive devices with synaptic behavior via facilitating ion transport of the zeolitic imidazolate framework-8 embedded into a polyvinylpyrrolidone polymer matrix. Appl. Sur. Sci. 2021, 567, 150748. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, G.; Wang, C.; Zhang, W.; Li, R.-W.; Wang, L. Polymer memristor for information storage and neuromorphic applications. Mater. Horiz. 2014, 1, 489–506. [Google Scholar] [CrossRef]
- Mostafa, H.; Khiat, A.; Serb, A.; Mayr, C.G.; Indiveri, G.; Prodromakis, T. Implementation of a spike-based perceptron learning rule using TiO2− x memristors. Front. Neurosci. 2015, 9, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, X.; Qin, C.; Lu, C.; Zhao, J.; Zhao, R.; Ren, D.; Li, H. Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing. ACS Appl. Mater. Interfaces 2019, 11, 48029–48038. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, Y.P.; Bang, Y.; Lee, H.J.; Lee, E.J.; Yoo, Y.J.; Park, S.Y. Short-Term to Long-Term Plasticity Transition Behavior of Memristive Devices with Low Power Consumption via Facilitating Ionic Drift of Implanted Lithium. Electronics 2021, 10, 2564. https://doi.org/10.3390/electronics10212564
Jeon YP, Bang Y, Lee HJ, Lee EJ, Yoo YJ, Park SY. Short-Term to Long-Term Plasticity Transition Behavior of Memristive Devices with Low Power Consumption via Facilitating Ionic Drift of Implanted Lithium. Electronics. 2021; 10(21):2564. https://doi.org/10.3390/electronics10212564
Chicago/Turabian StyleJeon, Young Pyo, Yongbin Bang, Hak Ji Lee, Eun Jung Lee, Young Joon Yoo, and Sang Yoon Park. 2021. "Short-Term to Long-Term Plasticity Transition Behavior of Memristive Devices with Low Power Consumption via Facilitating Ionic Drift of Implanted Lithium" Electronics 10, no. 21: 2564. https://doi.org/10.3390/electronics10212564
APA StyleJeon, Y. P., Bang, Y., Lee, H. J., Lee, E. J., Yoo, Y. J., & Park, S. Y. (2021). Short-Term to Long-Term Plasticity Transition Behavior of Memristive Devices with Low Power Consumption via Facilitating Ionic Drift of Implanted Lithium. Electronics, 10(21), 2564. https://doi.org/10.3390/electronics10212564