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Abstract: Recent innovations in information technology have encouraged extensive research into the
development of future generation memory and computing technologies. Memristive devices based on
resistance switching are not only attractive because of their multi-level information storage, but they
also display fascinating neuromorphic behaviors. We investigated the basic human brain’s learning
and memory algorithm for “memorizing” as a feature for memristive devices based on Li-implanted
structures with low power consumption. A topographical and surface chemical functionality analysis
of an Li:ITO substrate was conducted to observe its characterization. In addition, a switching
mechanism of a memristive device was theoretically studied and associated with ion migrations into
a polymeric insulating layer. Biological short-term and long-term memory properties were imitated
with the memristive device using low power consumption.

Keywords: memristive device; short-term memory; long-term memory; lithium; plasticity

1. Introduction

The demand for data processing in computing systems is significantly increasing,
as data processing has become more complicated due to the diversity of information
types, and since new developments in technology, such as big data, deep learning artificial
intelligence (AI), and the internet of things (IoT), are enabling us to access an enormous
amount of information in real time. The von Neumann architecture, which is a modern
computing system consisting of a control, arithmetic/logic, registers, and memory units,
has critical disadvantages for managing massive data processing such as the inability
to conduct parallel implementation, the Von Neumann bottleneck, and has high-power
consumption due to the fact of sequential instruction processing [1–8].

Neuromorphic computing, which imitates the human brain’s information processing, has
been proposed as an alternative computing architecture to sequential data processing [9–13].
The major idea behind the proposed neuromorphic computing concept is collocating
memory and processing units involving parallel data processing that separate parts of a
complex task into smaller and independent parts to efficiently handle larger amounts of
data. However, neuronal circuitry based on conventional silicon complementary metal
oxide semiconductors (CMOS) is disappointing due to the low learning and non-volatile
synaptic behavior. Thus, the fulfillment of scalable and high-performance neuromorphic
hardware requires a new concept of devices serving synapse mimicking phenomena such
as short-term and long-term plasticity.

Recently, novel designed devices have shown promise for realizing the synaptic
dynamics in the learning process through various mechanisms of ferroelectric effects [14,15],
spintronic effect [16], phase transitions [17,18], and ionic transfer [19,20]. Among these,
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research on memristive devices employing the connection phenomenon of ion filaments or
oxygen vacancy has been conducted by storing information with their conductance states
and exhibiting conductivity modulation based on the programming electric field [21–23].
Rapid diffusive ions, such as Ag+ and Cu2+, or oxygen vacancy migrate into the insulating
medium materials to form a filamentary structure, and silicone-based compounds are also
implemented as a conductive bridge to effectively devise short-term memory (STM) and
long-term memory (LTM) [24–27]. The key issue involved in the low power consumption
of the memristive devices performing STM and LTM is that the switching materials can be
easily ionized and aid in high filamentary connectivity by the applied electric stimulus.

In this study, the basic human brain’s learning and memory algorithms for STM and
LTM and their transition behaviors with memristive devices were observed. The structure
of the memristive device consisted of a metal/(polymeric) insulator/metal (MIM) con-
taining Li that was mainly a resistive switching material for ionic drift and filamentary
formation. For effective resistive switching, the Li was implanted in an ITO using the
thermal evaporation method, because Li has very low ionization energy; therefore, it was
easily ionized and effortlessly immigrated by an applied electric field for the development
of ionic filament between the top and bottom electrodes. The implanted Li was determined
by X-ray photoelectron microscopy (XPS) analysis, and the origin of the electrical character-
istics of the Li-implanted memristive device was investigated through surface analyses via
scanning electron microscopy (SEM) and atomic force microscopy (AFM). The memristive
device with an Li-implanted ITO performed hysteresis behavior with a voltage sweep from
–2 to 2 V and a 102 on/off ratio as a resistive switching device, which we evaluated as the
digital data storage capability. Furthermore, the memristive devices achieved the brain
mimicking behavior of STM and LTM conductance dynamics with an exceptionally low
power of 70 pJ per programming. Eventually, we investigated whether our device was able
to operate analog data processing based on the frequency domain to mimic the human
nervous system.

2. Experimental Details
2.1. Memristive Devices’ Fabrication

ITO-coated glass substrates were serially cleaned with acetone, methanol, and deion-
ized water using an ultra-sonication cleaning bath for 20 min. The cleaned substrates
were dried using high-purity N2 (99.9%) gas before the substrates were processed using
an optical treatment with an ultraviolet ozone cleaner for 20 min to smooth and modify
the surface of ITO. The Li granular (high-grade sodium, Sigma–Aldrich) was a 99% metal
basis with a 4–10 mesh particle size and contained 0.5% of sodium. The Li was implanted
onto the ITO by vacuum evaporation under a pressure of 1 × 10−6 Torr. The quantity
of implanted Li was controlled by quartz crystal microbalance embedded in the vacuum
evaporation system and monitored at 1 A/s for 50 s. After the vacuum evaporation of
Li onto the ITO to contribute their doping profile, the Li:ITO/substrate was annealed at
200 ◦C for 2 h in a vacuum chamber. Polyvinylpyrrolidone (PVP) powder (100 mg) was
dissolved in 5 mL of ethanol solvent for 30 min with magnetic stirring. The PVP solution
was deposited on the Li-implanted ITO/glass as a polymeric insulating layer. The polymer
thin film was spin-coated at 2000 rpm for 30 s and then annealed on a hot plate at 145 ◦C
for 30 min to remove the residual solvent. After the baking process, an Ag electrode was
deposited to a thickness of 100 nm using vacuum evaporation under a pressure of 1 × 10−6

Torr. The Ag electrode and the ITO substrate corresponded to the top electrode (TE) and
the bottom electrode (BE), respectively.

2.2. Characterization and Device Performance Measrument

XPS was performed using a Theta Probe Base System (Thermo Fisher Scientific Co.)
with monochromic Al Kα radiation at an energy of 25 W after the Li-implanted ITO/glass
was prepared. Morphological analyses of the Li-implanted ITO were carried out using
field emission scanning electron microscopy (FE-SEM, JSM-7100F, JEOL Ltd.) and AFM
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measurement (Park Systems, XE-100). The electrical properties of the Li-implanted memris-
tive device were measured using a Keithley 4200-SCS semiconductor parameter analyzer
coupled with a Keithley 4225-PMU pulse measurement unit. The currents were simultane-
ously measured while applying bias voltages in both the sweeping and pulse modes. Due
to the limited resolution during measurement with the pulse operation system, the current
output under 1 µA was modified to 0.05 µA, collectively. The conductance was calculated
by using the current–voltage (I–V). The presented data are the best case in a trial to explain
and to represent the device’s performance.

3. Results and Discussion

Schematic diagrams for the implantation process of Li onto an ITO and the fabrication
of the memristive devices, including deposition of the polymeric insulating layer and the
top electrode, are given in Figure 1a. Figure 1b shows a cross-sectional SEM image of the
PVP/Li:ITO/glass with a defining thickness of 179 nm of PVP on an Li:ITO/substrate.
From the AFM image of 5× 5 µm, the average surface roughness of the Li:ITO was 97.2 nm
as shown in Figure 1c, and the particles were confirmed to be Li, which was supported by
XPS analysis, because Li was partially implanted on the surface of the ITO originating from
a very low growth rate in thermal evaporation process [28]. In order to characterize the
Li:ITO, the XPS peaks of the Li:ITO over annealing periods of 200 ◦C were studied as shown
in Figure 1d,e. Generally, the corresponding peak of Li 1s was originally centered at 55 eV,
and the Li 1s’ corresponding peak of the annealed Li:ITO/substrate appeared at 55.04 eV,
which shows that the Li was effectively deposited onto ITO as shown Figure 1d [29,30]. In
addition, the atomic proportion for Li s1 of the Li:ITO with a thermal treatment of 30.65%
was quantitatively higher than that without the thermal treatment of 29.78%.

Figure 1. (a) Schematic flow chart of the fabrication process of the memristive devices implanting Li onto indium tin oxide
(ITO). (b) A cross-sectional scanning electron microscopy image of polyvinylpyrrolidone (PVP, polymeric insulator) layer
(highlighted) onto Li-implanted ITO. (c) Atomic force microscopy image of the Li:ITO’s surface. (d) X-ray photoelectron
spectroscopy (XPS) spectra of Li-implanted ITO after that was annealed at 200 ◦C for 2 h and the corresponding regions
over the binding energy were marked. (e) The XPS peak corresponding to Li 1s of an Li-implanted ITO sample compared to
that without a vacuum thermal treatment (reference peak of Li 1s: 55 eV).
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The hysteresis loop of the memristive device based on a MIM structure with Li-
implantation was clearly observed over a sweeping voltage from –2 V to 2 V, otherwise the
hysteresis loop of the memristive devices without the Li-implantation process collapsed as
shown in Figure 2a and its insert. The endurance of the memristive devices for 50 cycles
was obtained to present their stability, but the on/off window slightly decreased during the
cyclic operation, which infers that the current of the memristive device slightly improved
due to the ionic drift by the Li element as the voltage was applied during the cycle. After
that, the I–V sweep measurements were conducted (i.e., –1 V→ 0 V→ +1.0 V→ 0 V→
–1.0 V→ 0 V), and the memristive device showed a typical asymmetric resistance-switching
behavior as shown in Figure 2b. From the initial voltage –1 to 1 V, the current gradually
decreased and increased following the applied voltages, respectively. When the applied
voltage reached approximately 1 V, the current suddenly increased from the HRS to a
low-resistive state (LRS), which is called the SET process. The stable resistive-switching
operation was possible with a large RON/ROFF ratio of 4.61 × 103. In the I–V sweep
in the negative voltage, the current gradually increased when the voltage reached –1 V
and decreased to 0 V, which is a typical property for “write once read many” (WORM)
devices. WORM devices can be explained as data storage devices memorizing information
in a set process and which are not removed during operations; they nearly match the
functionality of human LTM behavior. However, the device with a SET state during a I–V
sweep between –1 V and 1 V could possibly switch to the RESET state according to the
bipolar I–V characteristics with a sweep mode from −2 to 2 V.

Figure 2. (a) The bipolar current–voltage (I–V) characteristics when a sweep mode bias is applied voltage from –2 to 2 V
of an Ag/PVP/Li:ITO memristive device. The endurance of bipolar I–V for 50 cycles is presented in the insert. (b) I–V
characteristics when a sweep mode bias is applied as voltage in the range from –1 to 1 V of an Ag/PVP/Li:ITO memristive
device. I–V fitting curves on a log–log scale to illustrate the carrier transport mechanisms for a high-resistive state (HRS)
with a set process and low-resistive state (LRS) (c) in the positive voltages and (d) the negative voltages (ohmic: J∝V and
SCLC: I∝V1.96).
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The I–V fitting data of the conduction mechanisms for the electron transportation
models were plotted in log–log scales in Figure 2c,d. Briefly, four regions (i.e., I, II, III, and
IV) were identified as the ohmic conduction (OC) and the Mott Gurney law (space charge
limited current, SCLC) as follows:

JOC = qnµε
V
d

(1)

JSCLC =
9
8

εµ
V2

d3 (2)

where q, µ, ε, n, d, and V represent the electronic charge, carrier mobility, permittivity of the
active layer, density of carrier, distance separating the cathode and the anode, and voltages,
respectively. As for region I, from 0 to 0.5 V, I–V was mainly fitted by Equation (1) as the
current data on a natural log scale to a new linear relation J∝V1.16. When the forward bias
was applied to the device, the components of the Li and Ag atoms were ionized into Li+

and Ag+ ions at the electrodes and stored on the ITO that supplied electrons due to the
current flow. Subsequently, the ions accumulated to form a CF, and the electrons were
limited by the incomplete CF (region II), which presented J∝V1.96 indicating that SCLC
model of Equation (2) in the 0.5–1 V range. When the applied voltage reached the SET
voltage in the positive voltage region, the CF was completely formed between the two
electrodes following the ideal OC of J∝V (region III). Equally, when a reverse bias was
applied, the CF was already formed by the enriched ions of Li+ and Ag+, and the resistance
state maintained the LRS in which the current was proportional to the OC model as I∝V0.99.

Figure 3a,b show the I−V curves and the variation in the conductance of the mem-
ristive device during seven consecutive positive and negative dual sweeps (0 V→ +1 V
→ −1 V→ 0 V) and with a compliance current of 0.01 A, respectively. At the beginning
of the cyclic voltage sweeping, the resistive state of the memristive device was in HRS
and that resistive state was switched after three consecutive dual sweeps as conductive
filament had formed (HRS→ LRS). The conductance of the memristive device dramati-
cally increased from 0.00017 S to 0.012 S; therefore, the conductance continually improved
following a voltage sweep (0.012 S→ 0.0153 S). In Figure 3c, an HRS to LRS transition
was also observed in the retention test with a readout voltage of 0.05 V after 100 s from
the beginning under HRS. No significant changes after the transition from HRS to LRS
was seen over 3500 s (an hour). Our device had an excellent retention time in the LRS, but
the HRS was unstable. In particular, a gradual increment in the conductance after the set
process (LRS) was observed, because the CF was influenced to expand by the Li+ and Ag+

(Figure 3d). As the current value was evaluated in Figure 2a, only Ag+ was impractical for
construction of the conductive filament with the low potential stimulus, but Li+ strongly
changed the conductive path in the PVP polymeric matrix. For brain mimicking devices,
these electrical characteristics are considerable because of the similarity of the methods
expressing the conductance of the synapse, which is the delivery mechanism underlying
synaptic plasticity related to learning and memory.



Electronics 2021, 10, 2564 6 of 9

Figure 3. (a) Current–voltage (I−V) curves of the device during seven consecutive positive and negative dual sweeps (0 V
→ +1 V→ –1 V→ 0 V) with a compliance current of 0.01 A. (b) The conductance I–V curves following seven consecutive
positive and negative dual sweeps (0 V→ +1 V→ –1 V→ 0 V). (c) The retention time for an hour with an interval time of
1 s with a readout voltage of 0.05 V. (d) Schematic diagram of the resistive switching process.

In the conscious system of a human, the brain reacts to external stimuli through
“learning or training” and reconstructs them through “remembering or memorizing”.
The process in the brain establishes memory, which is divided into two types: STM and
LTM as shown in Figure 4a. Basically, STM is periodically from memory lasting a few
seconds, otherwise LTM is for several hours or longer. For realization of a human brain’s
learning and memory algorithm, we demonstrated a transition from STM to LTM of the
memristive device based on a pulse operating as shown Figure 4b,d. A programming
pulse of 1 V at 1 µs, including 10 read pulses of 0.01 V at 1 µs, was applied. The current
steadily increased after a pulse was applied, and then the current rapidly decreased as
the CF spontaneously ruptured, and the current level of the memristive device remained
mimicking STM. However, according to the repeatedly applied pulse voltage, the duration
time of the memristive device gradually decreased as shown in Figure 4c. The reduced
duration time could suggest that Li+ and Ag+ are progressively forming the conductive
filament. Consequently, the current dramatically increased and nearly reached 10 µA after
the seven pulses were applied, which were strong enough to generate numerous Li+ and
Ag+ ions and expanded filaments to restrain the spontaneous rupture of the filaments. The
STM-to-LTM transition occurred at 70 pJ with very low power consumption during an
event, which was calculated by P/∆t, P = V·I, and ∆t = period of seven pulses [31,32]. The
programming power consumption is remarkable in comparison to recent research results
on memristive devices based on MIM [33,34], polymer [27,35,36], and two-dimensional
materials [37,38]. After the transition from STM to LTM, the current level consistently
remained at half the value of the input pulse’s frequency (from 12 to 6 Mhz). Under
strong stimulus conditions, in Figure 4d, the current directly increased to 10 µA after 3 V
was applied, and then the state steadily remained. The performance of our memristive
devices were inconstant when the memristive devices operated under short periodic
pulses. However, the result implies a new opportunity for the memristive device as
a future neuromorphic processor that can operate with low programming power and
high frequency.
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Figure 4. (a) Schematic diagram for the short-term (STM) and long-term memory (LTM) transition process through the
rehearsal learning process. (b) Characteristics of the STM-to-LTM transition under an input of 7 pulses of 1 V for 1 µs with
10 read pulses of 0.01 V for 1 µs before the LTM transition and 1 V at 1 µs with 20 read pulses of 0.01 V for 1 µs after the
LTM transition. (c) Duration time indicating the period that the current increased to approximately 8 µA over the sequence
number of pulses and the I–V characteristic with the input stimulus during an interval of 12 µs (insert). (d) The property of
the direct transition to LTM by a strong stimulus of 3 V for 1 µs.

4. Conclusions

In summary, we performed human brain mimicking using memristive devices control-
ling STM and LTM with a low programming power consumption of 70 pJ per event. The
implanted Li was defined by surface analysis based on a photoelectric effect. Since Li with
low ionization energy and high ion mobility were employed, the memristive devices were
able to operate only with a voltage of 1 V and a time of 1 µs. Thus, the resistive switching
mechanism of the memristive device based on Li was initially demonstrated based on the
ion migrations into the polymeric insulating layer. The WORM properties of the mem-
ristive devices were studied for their I–V characteristics over the dual sweeping voltage,
and the conductance changes were also observed. Furthermore, we showed that the low
power memristive devices exhibited the fundamentals of next generation neuromorphic
systems, i.e., learning and memory. We believe that these results are of vital importance for
further research.
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