Mobile Communications for Tourism and Hospitality: A Review of Historical Evolution, Present Status, and Future Trends
Abstract
:1. Introduction
2. Methodology
2.1. Search Process
2.2. Inclusion and Exclusion Criteria
- To ensure the scientific quality and rigor of the reviewed articles, the type of literature included needs to be research or review papers;
- The included articles must be related to mobile communications and hospitality/tourism. That is, terms related to mobile communication technologies (e.g., mobile communications, 1G–5G, and mobile technologies) and hospitality/tourism (e.g., hotels, tours, and restaurants) were included in the title, abstract, and keywords of the article. Based on this, the researchers further read through the entire article to ensure that the included studies are closely related to the topic of this research;
- Personal biases that may occur in the selection process [22] are minimized using the consensus of two researchers for literature inclusion. Subsequently, 108 articles were finally obtained for analysis.
2.3. Data Encoding
- Literature sources and complete references;
- Main discipline area to which the publication belongs;
- Year of publication;
- Research methods (qualitative methods, quantitative methods, or a mixture of both);
- Research questions and topics;
- Whether the study used a theoretical/theoretical model and specifically what the theoretical/theoretical model is;
- Type of data used in the study (primary, secondary, simulated, or mixed data);
- The mobile communication technology context to which the study belongs;
- Functional areas or applications of mobile communication technology in tourism and hospitality that the study is primarily focused on;
- The country/regional context in which the study is based.
2.4. Data Analysis and Interpretation of the Coded Content
- Annual publication frequency trends of tourism and hospitality mobile communication research;
- Distribution of disciplinary areas and mobile communication system backgrounds to which tourism and hospitality mobile communication research belongs;
- Research methods, data types, and theoretical/theoretical model adoption;
- Relevant areas or applications supported by each generation of mobile communication technologies in hospitality and tourism and their corresponding articles.
3. Findings
3.1. Trends and Background of Mobile Communication Technology Research in Tourism and Hospitality
3.2. Uses of Research Methods and Theories or Theoretical Models
3.3. Classification of Functional Areas/Applications
3.4. Study Regions
4. Discussion and Implications
4.1. Overview of Mobile Communication Technology Research in Hospitality and Tourism
4.2. Effect of Each Generation of Mobile Communication Technology on Hotels and Tourism
4.3. Changes That Future Mobile Communication Technology Can Bring to Hospitality and Tourism
4.3.1. Mode of Tourism Service Output Will Change
4.3.2. Leisure Time and Leisure Quality Will Be Improved
4.3.3. Application Scenarios for 5G Technology Will Be More Diverse
5. Conclusions and Future Trends
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Routray, S.K.; Sharmila, K.P. 4.5G: A milestone along the road to 5G. In Proceedings of the International Conference on Information Communication & Embedded Systems, Chennai, India, 27–28 February 2014. [Google Scholar]
- Fadhil, H.M.; Dawood, Z.O. Evolutionary perspective of mobile communication technologies. In Proceedings of the 2018 International Conference on Computer and Applications (ICCA), Beirut, Lebanon, 25–26 July 2018; pp. 80–84. [Google Scholar]
- Panwar, N.; Sharma, S.; Singh, A.K. A survey on 5G: The next generation of mobile communication. Phys. Commun. 2016, 18, 64–84. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Gupta, M. A review on activities of fifth generation mobile communication system. Alex. Eng. J. 2018, 57, 1125–1135. [Google Scholar] [CrossRef]
- Jain, A.K.; Acharya, R.; Jakhar, S.; Mishra, T. Fifth generation (5G) wireless technology “Revolution in telecommunication”. In Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Tamil Nadu, India, 20–21 April 2018; pp. 1867–1872. [Google Scholar]
- Kumar, S.; Agrawal, T.; Singh, P. A future communication technology: 5G. Int. J. Future Gener. Commun. Netw. 2016, 9, 303–310. [Google Scholar] [CrossRef]
- Selinis, I.; Katsaros, K.; Allayioti, M.; Vahid, S.; Tafazolli, R. The race to 5G era; LTE and Wi-Fi. IEEE Access 2018, 6, 56598–56636. [Google Scholar] [CrossRef]
- You, X.; Zhang, C.; Tan, X.; Jin, S.; Wu, H. AI for 5G: Research directions and paradigms. Sci. China Inf. Sci. 2018, 62, 21301. [Google Scholar] [CrossRef] [Green Version]
- Batalla, J.M.; Krawiec, P.; Mavromoustakis, C.X.; Mastorakis, G.; Chilamkurti, N.; Negru, D.; Bruneau-Queyreix, J.; Borcoci, E. Efficient media streaming with collaborative terminals for the smart city environment. IEEE Commun. Mag. 2017, 55, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Law, R.; Chan, I.C.C.; Wang, L. A comprehensive review of mobile technology use in hospitality and tourism. J. Hosp. Mark. Manag. 2018, 27, 626–648. [Google Scholar] [CrossRef]
- Dorcic, J.; Komsic, J.; Markovic, S. Mobile technologies and applications towards smart tourism—State of the art. Tour. Rev. 2019, 74, 82–103. [Google Scholar] [CrossRef]
- Chen, S.; Law, R.; Xu, S.; Zhang, M. Bibliometric and visualized analysis of mobile technology in tourism. Sustainability 2020, 12, 7975. [Google Scholar] [CrossRef]
- Guo, S.; Wang, L.; Xie, Y.; Luo, X.; Zhang, S.; Xiong, L.; Ai, H.; Yuan, Z.; Wang, J. Bibliometric and visualized analysis of stem cells therapy for spinal cord injury based on web of science and citespace in the last 20 years. World Neurosurg. 2019, 132, e246–e258. [Google Scholar] [CrossRef] [PubMed]
- White, M.D.; Marsh, E.E. Content analysis: A flexible methodology. Libr. Trends 2006, 55, 22–45. [Google Scholar] [CrossRef] [Green Version]
- Elo, S.; Kyngas, H. The qualitative content analysis process. J. Adv. Nurs. 2008, 62, 107–115. [Google Scholar] [CrossRef]
- Camprubí, R.; Coromina, L. Content analysis in tourism research. Tour. Manag. Perspect. 2016, 18, 134–140. [Google Scholar] [CrossRef]
- Duriau, V.J.; Reger, R.K.; Pfarrer, M.D. A content analysis of the content analysis literature in organization studies: Research themes, data sources, and methodological refinements. Organ. Res. Methods 2007, 10, 5–34. [Google Scholar] [CrossRef] [Green Version]
- Gaur, A.; Kumar, M. A systematic approach to conducting review studies: An assessment of content analysis in 25 years of IB research. J. World Bus. 2018, 53, 280–289. [Google Scholar] [CrossRef]
- Kitchenham, B.; Brereton, O.P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic literature reviews in software engineering—A systematic literature review. Inf. Softw. Technol. 2009, 51, 7–15. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, B.; Kim, Y.; Wang, Y. Mobile communication research in communication journals from 1999 to 2014. New Media Soc. 2017, 19, 1668–1691. [Google Scholar] [CrossRef]
- Mehraliyev, F.; Chan, I.C.C.; Choi, Y.; Koseoglu, M.A.; Law, R. A state-of-the-art review of smart tourism research. J. Travel Tour. Mark. 2020, 37, 78–91. [Google Scholar] [CrossRef]
- Law, R.; Leung, D.; Au, N.; Lee, H.A. Progress and development of information technology in the hospitality industry. Cornell Hosp. Q. 2012, 54, 10–24. [Google Scholar] [CrossRef]
- Gelashvili, V.; Martínez-Navalón, J.G.; Herrera Enríquez, G. How stress and anxiety when using mobile restaurant reservation Apps influence users’ satisfaction and trust. J. Indian Bus. Res. 2021. [Google Scholar] [CrossRef]
- Huang, C.M.; Lee, C.H.; Zheng, J.R. A novel SIP-based route optimization for network mobility. IEEE J. Sel. Areas Commun. 2006, 24, 1682–1691. [Google Scholar] [CrossRef]
- Chevillat, P.R.; Schott, W. Broadband radio LANs and the evolution of wireless beyond 3G. IBM J. Res. Dev. 2003, 47, 327–336. [Google Scholar] [CrossRef]
- Racherla, P.; Hu, C.; Hyun, M.Y. Exploring the role of innovative technologies in building a knowledge-based destination. Curr. Issues Tour. 2008, 11, 407–428. [Google Scholar] [CrossRef]
- Yeoman, I.; McMahon-Beattie, U. Tomorrow’s tourist and the information society. J. Vacat. Mark. 2006, 12, 269–291. [Google Scholar] [CrossRef]
- Hultkrantz, L. Will there be a unified wireless marketplace for tourism? Curr. Issues Tour. 2002, 5, 149–161. [Google Scholar] [CrossRef]
- Roy, P.; Martínez, A.J.; Miscione, G.; Zuidgeest, M.H.P.; van Maarseveen, M.F.A.M. Using Social Network Analysis to profile people based on their e-communication and travel balance. J. Transp. Geogr. 2012, 24, 111–122. [Google Scholar] [CrossRef]
- Kwan, M.-P. Mobile communications, social networks, and urban travel: Hypertext as a new metaphor for conceptualizing spatial interaction. Prof. Geogr. 2007, 59, 434–446. [Google Scholar] [CrossRef]
- Hu, W.; Wang, X.; Kan, A.; Gao, S.; Li, Y.; Li, Z.; Zeng, W. Design and implementation of tourist security monitoring information service station based on internet of things. Meas. Control. Technol. 2013, 32, 136–139. [Google Scholar]
- Hunaiti, Z.; Garaj, V.; Balachandran, W.; Cecelja, F. Use of remote vision in navigation of visually impaired pedestrians. Int. Congr. Ser. 2005, 1282, 1026–1030. [Google Scholar] [CrossRef]
- Chang, H.H. Which one helps tourists most? Perspectives of international tourists using different navigation aids. Tour. Geogr. 2015, 17, 350–369. [Google Scholar] [CrossRef]
- Dal Fiore, F.; Mokhtarian, P.L.; Salomon, I.; Singer, M.E. “Nomads at last”? A set of perspectives on how mobile technology may affect travel. J. Transp. Geography. 2014, 41, 97–106. [Google Scholar] [CrossRef]
- Ciochetto, L. The impact of new technologies on leisure in developed and emerging economies. Int. Multidiscip. J. Soc. Sci. 2015, 4, 194–214. [Google Scholar] [CrossRef]
- Leung, D.; Lo, A.; Fong, L.H.N.; Law, R. Applying the Technology-Organization-Environment framework to explore ICT initial and continued adoption: An exploratory study of an independent hotel in Hong Kong. Tour. Recreat. Res. 2015, 40, 391–406. [Google Scholar] [CrossRef]
- Iera, A.; Molinaro, A.; Polito, S.; Ruggeri, G. End-to-end QoS provisioning in 4G with mobile hotspots. IEEE Netw. 2005, 19, 26–34. [Google Scholar] [CrossRef]
- Liang, S.; Schuckert, M.; Law, R.; Masiero, L. The relevance of mobile tourism and information technology: An analysis of recent trends and future research directions. J. Travel Tour. Mark. 2016, 34, 732–748. [Google Scholar] [CrossRef]
- Miyasaka, T.; Oba, A.; Akasaka, M.; Tsuchiya, T. Sampling limitations in using tourists’ mobile phones for GPS-based visitor monitoring. J. Leis. Res. 2018, 49, 298–310. [Google Scholar] [CrossRef]
- Li, Y. Analysis on influencing factors of rural tourism industry in jiangsu province based on “Internet+”. J. China Agric. Resour. Reg. Plan. 2018, 39, 256–261. [Google Scholar]
- Ooi, K.; Foo, F.; Tan, G. Can mobile taxi redefine the transportation industry? A systematic literature review from the consumer perspective. Int. J. Mob. Commun. 2018, 16, 341. [Google Scholar] [CrossRef]
- Tu, Y.-F.; Hwang, G.-J. Trends and research issues of mobile learning studies in hospitality, leisure, sport and tourism education: A review of academic publications from 2002 to 2017. Interact. Learn. Environ. 2018, 28, 385–403. [Google Scholar] [CrossRef]
- Berry, M.; Hamilton, M. Changing urban spaces: Mobile phones on trains. Mobilities 2010, 5, 111–129. [Google Scholar] [CrossRef]
- Pawlak, J. Travel-based multitasking: Review of the role of digital activities and connectivity. Transp. Rev. 2020, 40, 429–456. [Google Scholar] [CrossRef]
- Lodeiro-Santiago, M.; Santos-González, I.; Caballero-Gil, C.; Caballero-Gil, P.; Herrera-Priano, F. Novel guidance CPS based on the fatbeacon protocol. Appl. Sci. 2018, 8, 647. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhen, F.; Wang, B.; Li, Z.; Qin, X. Coupling social media and agent-based modelling: A novel approach for supporting smart tourism planning. J. Urban Technol. 2020. [Google Scholar] [CrossRef]
- Xu, Y.; Li, X.; Shaw, S.-L.; Lu, F.; Yin, L.; Chen, B.Y. Effects of data preprocessing methods on addressing location uncertainty in mobile signaling data. Ann. Am. Assoc. Geogr. 2020, 111, 515–539. [Google Scholar] [CrossRef]
- Uwamariya, M.; Cremer, S.; Loebbecke, C. Mobile payment enhancing tourism in emerging markets: A qualitative study among small and medium-sized enterprises (SMES) in rwanda’s tourism sector. J. Afr. Bus. 2021. [Google Scholar] [CrossRef]
- Lerario, A.; Varasano, A. An IoT smart infrastructure for S. Domenico Church in Matera’s “Sassi’’: A multiscale perspective to built heritage conservation. Sustainability 2020, 12, 6553. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Xue, J.; Park, S.; Li, Q. Tourism geography through the lens of time use: A computational framework using fine-grained mobile phone data. Ann. Am. Assoc. Geogr. 2020, 111, 1420–1444. [Google Scholar] [CrossRef]
- Chiang, C.-T. Developing an eMarketing model for tourism and hospitality: A keyword analysis. Int. J. Contemp. Hosp. Manag. 2020, 32, 3091–3114. [Google Scholar] [CrossRef]
- Chen, H.; Ryan, C. Transforming the museum and meeting visitor requirements: The case of the Shaanxi History Museum. J. Destin. Mark. Manag. 2020, 18, 100483. [Google Scholar] [CrossRef]
- Quattrini, R.; Pierdicca, R.; Paolanti, M.; Clini, P.; Nespeca, R.; Frontoni, E. Digital interaction with 3D archaeological artefacts: Evaluating user’s behaviours at different representation scales. Digit. Appl. Archaeol. Cult. Heritage 2020, 18, e00148. [Google Scholar] [CrossRef]
- Choi, T.; Kim, T.; Tavernier, W.; Korvala, A.; Pajunpää, J. Agile management and interoperability testing of SDN/NFV-enriched 5G core networks. ETRI J. 2018, 40, 72–88. [Google Scholar] [CrossRef] [Green Version]
- Kassens-Noor, E.; Fukushige, T. Olympic technologies. J. Urban Technol. 2018, 25, 83–104. [Google Scholar] [CrossRef]
- Alam, M.; Ferreira, J.; Mumtaz, S.; Ahmad Jan, M.; Rebelo, R.; Fonseca, J.A. Smart cameras are making our beaches safer: A 5G-envisioned distributed architecture for safe, connected coastal areas. IEEE Veh. Technol. Mag. 2017, 12, 50–59. [Google Scholar] [CrossRef]
- Stone, M.; Knapper, J.; Evans, G.; Aravopoulou, E. Information management in the smart city. Bottom Line 2018, 31, 234–249. [Google Scholar] [CrossRef]
- Ramos, V.; Yamaka, W.; Alorda, B.; Sriboonchitta, S. High-frequency forecasting from mobile devices’ bigdata: An application to tourism destinations’ crowdedness. Int. J. Contemp. Hosp. Manag. 2021. [Google Scholar] [CrossRef]
- Ballina, F.J. Smart business: The element of delay in the future of smart tourism. J. Tour. Futur. 2020. [Google Scholar] [CrossRef]
- Liao, C.; Nong, L. Smart city sports tourism integration based on 5G network and internet of things. Microprocess. Microsyst. 2021, 103971. [Google Scholar] [CrossRef]
- Agarwal, S.; Kumar, S.; Adichwal, N.K. Effect of marketing strategies on the market performance and a comparative study of online travel agencies in India. J. Public Aff. 2020. [Google Scholar] [CrossRef]
- Mahapatra, D.M.; Patra, S.K. A new destination of online travel business: A case study. Small Enterp. Dev. Manag. Ext. J. 2019, 46, 130–137. [Google Scholar] [CrossRef]
- Bhatt, P.R. Internationalisation and innovation: A case study of Nokia. Vision J. Bus. Perspect. 2002, 6, 121–129. [Google Scholar] [CrossRef]
- Rodriguez-Sanchez, M.C.; Martinez-Romo, J.; Borromeo, S.; Hernandez-Tamames, J.A. GAT: Platform for automatic context-aware mobile services for m-tourism. Expert Syst. Appl. 2013, 40, 4154–4163. [Google Scholar] [CrossRef]
- das Neves, A.J.W.A.; Biz, A.A.; Michelotti Bettoni, E. Sightseeing proposals in Curitiba- PR (Brazil): A 3G technology to support the construction of an application to self-guide walking tourist. Estud. Perspect. Tur. 2012, 21, 388–401. [Google Scholar]
- Bae, K.Y. Self-tour service technology based on a smartphone. J. Intell. Inf. Syst. 2010, 16, 147–157. [Google Scholar]
- Inkinen, T. Urban travel information and wireless technologies in Helsinki, Finland. J. Urban Technol. 2010, 17, 57–75. [Google Scholar] [CrossRef]
- Beritelli, P.; Schuppisser, M. Challenges in mobile business solutions for tourist destinations—The trial case of St. Moritz. J. Qual. Assur. Hosp. Tour. 2006, 6, 147–162. [Google Scholar] [CrossRef]
- Jing, S.; Han, Y.; Meng, X.; Jiang, L.; Lin, L.; Chen, G. Design and realization of tourism GIS system based on mobile AR+VR. Bull. Surv. Mapp. 2019, 79–84. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, W.; Wei, J.; Yu, H. Current situation and prospect of V2X with ultra-reliable and low-latency. J. Signal Process. 2019, 35, 1773–1783. [Google Scholar]
- Mastrosimone, A.; Panno, D. Moving network based on mmWave technology: A promising solution for 5G vehicular users. Wirel. Netw. 2017, 24, 2409–2426. [Google Scholar] [CrossRef]
- Lee, J.; Gutesa, S.; Dimitrijevic, B.; Zhang, Y.; Spasovic, L.; Singh, J. Deployment and field evaluation of in-vehicle traffic signal advisory system (ITSAS). Information 2017, 8, 72. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Hui, F.; Shi, X.; Ma, J.; Yang, L. Concept, architecture and challenging technologies of ubiquitous traffic information service system. J. Traffic Transp. Eng. 2014, 14, 105–115. [Google Scholar]
- Gundlegård, D.; Karlsson, J.M. Handover location accuracy for travel time estimation in GSM and UMTS. IET Intell. Transp. Syst. 2009, 3, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Stathopoulos, A.; Tsekeris, T. The Athens Dynamic Traffic Map for multimodal travel information services. J. Maps 2008, 4, 119–133. [Google Scholar] [CrossRef]
- Qian, C.; Li, W.; Duan, Z.; Yang, D.; Ran, B. Using mobile phone data to determine spatial correlations between tourism facilities. J. Transp. Geogr. 2021, 92, 103018. [Google Scholar] [CrossRef]
- Xu, Y.; Jeong, E.; Baiomy, A.E.; Shao, X. Investigating onsite restaurant interactive self-service technology (ORISST) use: Customer expectations and intentions. Int. J. Contemp. Hosp. Manag. 2020, 32, 3335–3360. [Google Scholar] [CrossRef]
- Jeng, C.-R. The role of trust in explaining tourists’ behavioral intention to use E-booking services in Taiwan. J. China Tour. Res. 2019, 15, 478–489. [Google Scholar] [CrossRef]
- Lu, J.; Mao, Z.; Wang, M.; Hu, L. Goodbye maps, hello apps? Exploring the influential determinants of travel app adoption. Curr. Issues Tour. 2014, 18, 1059–1079. [Google Scholar] [CrossRef]
- O’ Regan, M.; Chang, H. Smartphone adoption amongst Chinese youth during leisure-based tourism: Challenges and opportunities. J. China Tour. Res. 2015, 11, 238–254. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-Y.; Park, J.; Morrison, A.M. A model of traveller acceptance of mobile technology. Int. J. Tour. Res. 2008, 10, 393–407. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, G.; Pratt, S.; Narayan, J. Exploring consumer behavior to purchase travel online in Fiji and Solomon Islands? An extension of the UTAUT framework. Int. J. Cult. Tour. Hosp. Res. 2020, 15, 227–247. [Google Scholar] [CrossRef]
- Shin, E.-W. Study on the convergence & integration type department of tourism at college in the era of the 4th industrial revolution. Soc. Converg. Knowl. Trans. 2019, 7, 95–102. [Google Scholar]
- Buhalis, D.; Harwood, T.; Bogicevic, V.; Viglia, G.; Beldona, S.; Hofacker, C. Technological disruptions in services: Lessons from tourism and hospitality. J. Serv. Manag. 2019, 30, 484–506. [Google Scholar] [CrossRef]
- Lee, S.; Hwang, J.; Hyun, M.Y. Mobile services as a marketing tool to enhance restaurant revenue: An exploratory study. J. Hosp. Mark. Manag. 2010, 19, 464–479. [Google Scholar] [CrossRef]
- Buhalis, D.; O’Connor, P. Information communication technology revolutionizing tourism. Tour. Recreat. Res. 2005, 30, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Dou, X.; Fan, A.; Cai, L. Mobile contextual marketing in a museum setting. J. Serv. Mark. 2020. [Google Scholar] [CrossRef]
- Lau, A. New technologies used in COVID-19 for business survival: Insights from the Hotel Sector in China. Inf. Technol. Tour. 2020, 22, 497–504. [Google Scholar] [CrossRef]
- Pillai, S.G.; Haldorai, K.; Seo, W.S.; Kim, W.G. COVID-19 and hospitality 5.0: Redefining hospitality operations. Int. J. Hosp. Manag. 2021, 94, 102869. [Google Scholar] [CrossRef]
- Luo, J.-N.; Yang, M.-H.; Tsai, K.-Y. A geographic map-Based middleware framework to obfuscate smart vehicles’ locations. Multimedia Tools Appl. 2019, 78, 28877–28902. [Google Scholar] [CrossRef]
- Rengaraju, P.; Lung, C.-H.; Srinivasan, A. QoS-aware distributed security architecture for 4G multihop wireless networks. IEEE Trans. Veh. Technol. 2014, 63, 2886–2900. [Google Scholar] [CrossRef]
- Yang, G.; Wong, D.S.; Deng, X. Formal security definition and efficient construction for roaming with a privacy-preserving extension. J. Univers. Comput. Sci. 2008, 14, 441–462. [Google Scholar]
- Potter, B. Mobile security risks: Ever evolving. Netw. Secur. 2007, 2007, 19–20. [Google Scholar] [CrossRef]
- Lipovac, A.; Obradovic, I.; Zakarija, I. Ethernet transport performance and triple-play QoS in large ship environment. NASE MORE 2014, 61, 124–131. [Google Scholar]
- Mohorko, J.; Klampfer, S. Presentation of UMTS network and his simulation using OPNET Modeler. Inf. Midem J. Microelectron. Electron. Compon. Mater. 2008, 38, 124–130. [Google Scholar]
- Becchetti, L.; Delli Priscoli, F.; Inzerilli, T.; Mahonen, P.; Munoz, L. Enhancing IP service provision over heterogeneous wireless networks: A path toward 4G. IEEE Commun. Mag. 2001, 39, 74–81. [Google Scholar] [CrossRef]
- Ballina, F.J.; Valdes, L.; Del Valle, E. The Phygital experience in the smart tourism destination. Int. J. Tour. Cities 2019, 5, 656–671. [Google Scholar] [CrossRef]
- Wang, D.; Park, S.; Fesenmaier, D.R. The role of smartphones in mediating the touristic experience. J. Travel Res. 2011, 51, 371–387. [Google Scholar] [CrossRef] [Green Version]
- Kokkinou, A.; Tremiliti, E.; Iwaarden, M.v.; Mitas, O.; Straatman, S. Are you traveling alone or with your device? The impact of connected mobile device usage on the travel experience. J. Hosp. Tour. Insights 2020. [Google Scholar] [CrossRef]
- Davoli, L.; Paraskevopoulos, I.; Campanella, C.; Bauro, S.; Vio, T.; Abrardo, A.; Ferrari, G. Ultrasonic-based environmental perception for mobile 5G-oriented XR applications. Sensors 2021, 21, 1329. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Shrimankar, D. Secure & efficient intra-MME handovers via mobile relays within the LTE-A and future 5G high-speed train networks. Peer-to-Peer Netw. Appl. 2019, 13, 762–779. [Google Scholar] [CrossRef]
- He, D.; Ai, B.; Guan, K.; Zhong, Z.; Hui, B.; Kim, J.; Chung, H.; Kim, I. Stochastic channel modeling for railway tunnel scenarios at 25 GHz. ETRI J. 2018, 40, 39–50. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Ai, B.; Guan, K.; Zhong, Z.; Hui, B.; Kim, J.; Chung, H.; Kim, I. Channel measurement, simulation, and analysis for high-speed railway communications in 5G millimeter-wave band. IEEE Trans. Intell. Transp. Syst. 2017, 19, 3144–3158. [Google Scholar] [CrossRef]
- Li, L.; Xu, K.; Wang, D.; Peng, C.; Zheng, K.; Mijumbi, R.; Xiao, Q. A longitudinal measurement study of TCP performance and behavior in 3G/4G networks over high speed rails. IEEE/ACM Trans. Netw. 2017, 25, 2195–2208. [Google Scholar] [CrossRef]
- Pan, M.-S.; Lin, T.-M.; Chen, W.-T. An enhanced handover scheme for mobile relays in LTE-A high-speed rail networks. IEEE Trans. Veh. Technol. 2014, 64, 743–756. [Google Scholar] [CrossRef]
- Vishwakarma, P.; Mukherjee, S.; Datta, B. Travelers’ intention to adopt virtual reality: A consumer value perspective. J. Destin. Mark. Manag. 2020, 17, 100456. [Google Scholar] [CrossRef]
- Eom, I. A study on content classification for developing virtual reality-based attraction contents. J. Korea Contents Assoc. 2019, 19, 499–506. [Google Scholar]
- Hu, Q.; Yu, D.; Wang, S.; Fu, C.; Ai, M.; Wang, W. Hybrid three-dimensional representation based on panoramic images and three-dimensional models for a virtual museum: Data collection, model, and visualization. Inf. Vis. 2016, 16, 126–138. [Google Scholar] [CrossRef]
- Hyun, M.Y.; Lee, S.; Hu, C. Mobile-mediated virtual experience in tourism: Concept, typology and applications. J. Vacat. Mark. 2009, 15, 149–164. [Google Scholar] [CrossRef]
- Peng, R.; Lou, Y.; Kadoch, M.; Cheriet, M. A human-guided machine learning approach for 5G smart tourism IoT. Electronics 2020, 9, 947. [Google Scholar] [CrossRef]
- Fabry, N.; Blanchet, C. Monaco’s struggle to become a smart destination. Int. J. Tour. Cities 2019, 5, 672–684. [Google Scholar] [CrossRef]
- Byun, J.; Kim, B.W.; Ko, C.Y.; Byun, J.-W. 4G LTE network access system and pricing model for IoT MVNOs: Spreading smart tourism. Multimed. Tools Appl. 2017, 76, 19665–19688. [Google Scholar] [CrossRef]
- Mercan, S.; Cain, L.; Akkaya, K.; Cebe, M.; Uluagac, S.; Alonso, M.; Cobanoglu, C. Improving the service industry with hyper-connectivity: IoT in hospitality. Int. J. Contemp. Hosp. Manag. 2020, 33, 243–262. [Google Scholar] [CrossRef]
- Wang, R.; Luo, J.; Huang, S. Developing an artificial intelligence framework for online destination image photos identification. J. Destin. Mark. Manag. 2020, 18, 100512. [Google Scholar] [CrossRef]
- Wang, W.; Kumar, N.; Chen, J.; Gong, Z.; Kong, X.; Wei, W.; Gao, H. Realizing the potential of the internet of things for smart tourism with 5G and AI. IEEE Netw. 2020, 34, 295–301. [Google Scholar] [CrossRef]
- Choe, Y.; Fesenmaier, D.R. Designing an advanced system for destination management: A case study of Northern Indiana. Ind. Manag. Data Syst. 2020, 121, 1167–1190. [Google Scholar] [CrossRef]
- Ivars-Baidal, J.A.; Celdrán-Bernabeu, M.A.; Femenia-Serra, F.; Perles-Ribes, J.F.; Giner-Sánchez, D. Measuring the progress of smart destinations: The use of indicators as a management tool. J. Destin. Mark. Manag. 2021, 19, 100531. [Google Scholar] [CrossRef]
- Kamboj, S.; Joshi, R. Examining the factors influencing smartphone apps use at tourism destinations: A UTAUT model perspective. Int. J. Tour. Cities 2020, 7, 135–157. [Google Scholar] [CrossRef]
- Razzaq, A.; Sharif, A.; Ahmad, P.; Jermsittiparsert, K. Asymmetric role of tourism development and technology innovation on carbon dioxide emission reduction in the Chinese economy: Fresh insights from QARDL approach. Sustain. Dev. 2020, 29, 176–193. [Google Scholar] [CrossRef]
- Sarkar, S.K.; George, B. Social media technologies in the tourism industry: An analysis with special reference to their role in sustainable tourism development. Int. J. Tour. Sci. 2018, 18, 269–278. [Google Scholar] [CrossRef]
- Choi, Y.; Oh, M.; Choi, M.; Kim, S. Exploring the influence of culture on tourist experiences with robots in service delivery environment. Curr. Issues Tour. 2020, 24, 717–733. [Google Scholar] [CrossRef]
- Pillai, R.; Sivathanu, B. Adoption of AI-based chatbots for hospitality and tourism. Int. J. Contemp. Hosp. Manag. 2020, 32, 3199–3226. [Google Scholar] [CrossRef]
- Seyitoğlu, F.; Ivanov, S. Understanding the robotic restaurant experience: A multiple case study. J. Tour. Futures 2020. [Google Scholar] [CrossRef]
- Reif, J.; Schmücker, D. Exploring new ways of visitor tracking using big data sources: Opportunities and limits of passive mobile data for tourism. J. Destin. Mark. Manag. 2020, 18, 100481. [Google Scholar] [CrossRef]
- Stylos, N.; Zwiegelaar, J.; Buhalis, D. Big data empowered agility for dynamic, volatile, and time-sensitive service industries: The case of tourism sector. Int. J. Contemp. Hosp. Manag. 2021, 33, 1015–1036. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, L. Image monitoring and management of hot tourism destination based on data mining technology in big data environment. Microprocess. Microsyst. 2021, 80, 103515. [Google Scholar] [CrossRef]
- Gao, H. Big data development of tourism resources based on 5G network and internet of things system. Microprocess. Microsyst. 2021, 80, 103567. [Google Scholar] [CrossRef]
- Baroutsou, V.; Hatz, C.; Blanke, U.; Haile, S.R.; Fehr, J.; Neumayr, A.; Puhan, M.A.; Buhler, S. TOURIST2—Tracking of urgent risks in swiss travellers to the 6 main travel destinations—Feasibility and ethical considerations of a smartphone application-based study. Travel Med. Infect. Dis. 2021, 39, 101912. [Google Scholar] [CrossRef]
- Psiha, M.M.; Vlamos, P. IoT applications with 5G connectivity in medical tourism sector management: Third-party service scenarios. Adv. Exp. Med. 2017, 989, 141–154. [Google Scholar] [CrossRef]
Research Background | Frequency | Percentage |
---|---|---|
Research areas | ||
Hospitality, Leisure, Sport, and Tourism | 42 | 38.89% |
Computer Science/Information Systems/Engineering/Science and Technology/Telecommunications | 39 | 36.11% |
Transportation/Transportation Science and Technology/Geography | 13 | 12.04% |
Others (Urban Studies/Business and Economics/Agriculture/Information Science and Library Science/Communication/Public Administration/Education and Educational Research) | 14 | 12.96% |
Total | 108 | 100.00% |
Mobile communication systems | ||
3G | 24 | 22.22% |
4G | 46 | 42.59% |
5G | 38 | 35.19% |
Total | 108 | 100.00% |
- | Hospitality and Tourism Research | Other Research Areas | Total | |||
---|---|---|---|---|---|---|
- | F | % | F | % | F | % |
Methodological approaches | ||||||
Qualitative | 20 | 40.00 | 23 | 39.66 | 43 | 39.81 |
Quantitative | 23 | 46.00 | 7 | 12.07 | 30 | 27.78 |
Mixed methods | 7 | 14.00 | 28 | 48.28 | 35 | 32.41 |
Total | 50 | 100 | 58 | 100 | 108 | 100 |
Data sources | ||||||
Primary data | 25 | 50.00 | 8 | 13.80 | 33 | 30.56 |
Secondary data | 19 | 38.00 | 18 | 31.03 | 37 | 34.26 |
Simulation | 0 | 0.00 | 14 | 24.14 | 14 | 12.96 |
Mixed data | 6 | 12.00 | 18 | 31.03 | 24 | 22.22 |
Total | 50 | 100 | 58 | 100 | 108 | 100 |
Theoretical foundations | ||||||
Yes | 21 | 42.00 | 4 | 6.90 | 25 | 23.15 |
No | 29 | 58.00 | 54 | 93.10 | 83 | 76.85 |
Total | 50 | 100 | 58 | 100 | 108 | 100 |
Theories/Theoretical models | ||||||
Technology acceptance model/Technology adoption model | 5 | 10.00 | 0 | 0.00 | 5 | 4.63 |
Elaborated likelihood model | 1 | 2.00 | 0 | 0.00 | 1 | 0.93 |
Technology–organization–environment framework | 1 | 2.00 | 0 | 0.00 | 1 | 0.93 |
Unified theory of acceptance and use of technology | 0 | 0.00 | 1 | 1.72 | 1 | 0.93 |
Spreading activation theory | 1 | 2.00 | 0 | 0.00 | 1 | 0.93 |
Theory of value co-creation | 1 | 2.00 | 1 | 1.72 | 2 | 1.85 |
Modified value attitude–behavior model | 1 | 2.00 | 0 | 0.00 | 1 | 0.93 |
Value-based adoption model | 2 | 4.00 | 0 | 0.00 | 2 | 1.85 |
Quantile Autoregressive Distributive Lag model | 0 | 0.00 | 1 | 1.72 | 1 | 0.93 |
Social cognitive theory | 1 | 2.00 | 0 | 0.00 | 1 | 0.93 |
Theory of mind and self-aware | 0 | 0.00 | 1 | 1.72 | 1 | 0.93 |
Extended-self theory | 0 | 0.00 | 1 | 1.72 | 1 | 0.93 |
Maslow’s hierarchy of needs | 0 | 0.00 | 1 | 1.72 | 1 | 0.93 |
Theory of reasoned action | 1 | 2.00 | 0 | 0.00 | 1 | 0.93 |
Theory of planned behavior | 1 | 2.00 | 0 | 0.00 | 1 | 0.93 |
Grounded theory | 1 | 2.00 | 0 | 0.00 | 1 | 0.93 |
Innovation diffusion theory | 1 | 2.00 | 0 | 0.00 | 1 | 0.93 |
Big data specific framework | 1 | 2.00 | 0 | 0.00 | 1 | 0.93 |
Agent-based modelling | 1 | 2.00 | 0 | 0.00 | 1 | 0.93 |
Unified theory of acceptance and use of technology | 2 | 4.00 | 0 | 0.00 | 2 | 1.85 |
Smart destination model | 1 | 2.00 | 0 | 0.00 | 1 | 0.93 |
Contextual marketing theory | 1 | 2.00 | 0 | 0.00 | 1 | 0.93 |
Information system success model | 1 | 2.00 | 0 | 0.00 | 1 | 0.93 |
Systems | Functional Areas/Applications | Frequency | Publications | Total | Percentage |
---|---|---|---|---|---|
3G | Network mobility | 1 | Huang et al. [24] | 10 | 9.26% |
Wireless systems | 1 | Chevillat et al. [25] | |||
Knowledge-driven destination | 1 | Racherla et al. [26] | |||
Tourism future trends | 1 | Yeoman et al. [27] | |||
New generation mobile communication services | 1 | Hultkrantz [28] | |||
Balance between the use of electronic communications and travel | 1 | Roy et al. [29] | |||
Tourism spatial interaction | 1 | Kwan [30] | |||
Tourist security monitoring | 1 | Hu et al. [31] | |||
Navigation support for visually impaired pedestrians | 1 | Hunaiti et al. [32] | |||
Navigation aid to tourists | 1 | Chang [33] | |||
4G | The impact of mobile technology on travel behavior | 2 | Dal Fiore et al. [34], Ciochetto [35] | 15 | 13.89% |
Situation of hotels adopting mobile technology | 1 | Leung et al. [36] | |||
4G wireless scenarios | 1 | Iera et al. [37] | |||
Mobile tourism research trends | 1 | Liang et al. [38] | |||
Visitor monitoring | 1 | Miyasaka et al. [39] | |||
Countryside tour | 1 | Li [40] | |||
User acceptance of mobile taxis | 1 | Ooi et al. [41] | |||
Mobile learning | 1 | Tu et al. [42] | |||
Intermediate connection and sense of belonging in the travel experience | 1 | Berry et al. [43] | |||
Travel-based multitasking | 1 | Pawlak [44] | |||
Location and guidance in a non-internet connected environment | 1 | Lodeiro-Santiago et al. [45] | |||
Tourist decision-making | 1 | Zhang et al. [46] | |||
Human mobility patterns base on mobile signaling data | 1 | Xu et al. [47] | |||
Mobile payment | 1 | Uwamariya et al. [48] | |||
5G | Intelligent monitoring and protection of infrastructure based on the IoT | 1 | Lerario et al. [49] | 12 | 11.11% |
Analysis of tourist time usage and spatiotemporal activity patterns | 1 | Xu et al. [50] | |||
Developing an eMarketing model for tourism and hospitality | 1 | Chiang [51] | |||
Smart Museum | 1 | Chen et al. [52] | |||
Digital interactive archaeological site/museum | 1 | Quattrini et al. [53] | |||
5G core network agile management | 1 | Choi et al. [54] | |||
Technical support for large-scale cultural and sports activities | 1 | Kassens-Noor et al. [55] | |||
Beach monitoring, connection communication, and data management framework | 1 | Alam et al. [56] | |||
Smart city information management | 1 | Stone et al. [57] | |||
High-frequency forecasting/Travel forecasting | 1 | Ramos et al. [58] | |||
Smart business | 1 | Ballina [59] | |||
Smart city sports tourism | 1 | Liao et al. [60] | |||
3G–5G | Travel services (travel self-service/smart service/tourism information system) | 9 | Agarwal et al. [61], Mahapatra et al. [62], Bhatt [63], Rodriguez-Sanchez et al. [64], das Neves et al. [65], Bae [66], Inkinen [67], Beritelli et al. [68], Jing et al. [69] | 41 | 37.96% |
Tourism intelligent transportation/IoV | 7 | Lu et al. [70], Mastrosimone et al. [71], Lee et al. [72], Zhao et al. [73], Gundlegård et al. [74], Stathopoulos et al. [75]; Qian et al. [76] | |||
Willingness and intent to use mobile communication technology | 6 | Xu et al. [77], Jeng [78], Lu et al. [79], O’ Regan et al. [80], Kim et al. [81]; Sharma et al. [82] | |||
Tourism/Restaurant/Hospitality management and marketing | 7 | Shin [83], Buhalis et al. [84], Lee et al. [85], Buhalis et al. [86], Dou et al. [87], Lau [88], Pillai et al. [89] | |||
User security and privacy protection | 4 | Luo et al. [90], Rengaraju et al. [91], Yang et al. [92], Potter [93] | |||
Mobile communication service quality | 3 | Lipovac et al. [94], Mohorko et al. [95], Becchetti et al. [96] | |||
Mobile communication travel experience | 3 | Ballina et al. [97], Wang et al. [98]; Kokkinou et al. [99] | |||
Mobile technology in tourism | 1 | Chen, Law, Xu, and Zhang [12] | |||
5G/XR/IoT integration | 1 | Davoli et al. [100] | |||
4G–5G | High-speed/Railway communications | 5 | Singh et al. [101], He et al. [102,103], Li et al. [104], Pan et al. [105] | 30 | 27.78% |
Virtual tourism | 4 | Vishwakarma et al. [106], Eom [107], Hu et al. [108], Hyun et al. [109] | |||
Smart tourism IoT service/Smart tourism destination | 8 | Peng et al. [110], Fabry et al. [111], Byun et al. [112], Mercan et al. [113], Wang et al. [114], Wang et al. [115], Choe et al. [116], Ivars-Baidal et al. [117] | |||
Tourism smart application | 3 | Batalla, Krawiec, Mavromoustakis, Mastorakis, Chilamkurti, Negru, Bruneau-Queyreix and Borcoci [9];Gelashvili, Martínez-Navalón and Herrera Enríquez [23], Kamboj et al. [118] | |||
Promote sustainable tourism and ecotourism | 2 | Razzaq et al. [119], Sarkar et al. [120] | |||
Robot service | 3 | Choi et al. [121], Pillai et al. [122], Seyitoğlu et al. [123] | |||
Tourism big data | 4 | Reif et al. [124], Stylos et al. [125], Zhang et al. [126], Gao [127] | |||
Mobile health | 1 | Baroutsou et al. [128] | |||
Total | 108 | 100.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Law, R.; Zhang, M.; Si, Y. Mobile Communications for Tourism and Hospitality: A Review of Historical Evolution, Present Status, and Future Trends. Electronics 2021, 10, 1804. https://doi.org/10.3390/electronics10151804
Chen S, Law R, Zhang M, Si Y. Mobile Communications for Tourism and Hospitality: A Review of Historical Evolution, Present Status, and Future Trends. Electronics. 2021; 10(15):1804. https://doi.org/10.3390/electronics10151804
Chicago/Turabian StyleChen, Sirong, Rob Law, Mu Zhang, and Yuqi Si. 2021. "Mobile Communications for Tourism and Hospitality: A Review of Historical Evolution, Present Status, and Future Trends" Electronics 10, no. 15: 1804. https://doi.org/10.3390/electronics10151804
APA StyleChen, S., Law, R., Zhang, M., & Si, Y. (2021). Mobile Communications for Tourism and Hospitality: A Review of Historical Evolution, Present Status, and Future Trends. Electronics, 10(15), 1804. https://doi.org/10.3390/electronics10151804