A Battery Management System with EIS Monitoring of Life Expectancy for Lead–Acid Batteries
Abstract
:1. Introduction
2. Battery Management System Architecture
2.1. Description of the 12 V VTZ Sensor
2.2. Basic VTZ Sensor Specifications
3. Experimental Setup
4. Results and Discussion
4.1. 1 kHz Calibration Process
4.2. EIS Measurement Dispersion Evaluation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Definition | |
SOH | State of Health |
SOC | State of Charge |
OCV | Open Circuit Voltage |
EIS | Electrochemical Impedance Spectroscopy |
VRLA | Valve-Regulated Lead–Acid |
VTZ | Name given for the multipurpose sensor |
GEIS | Galvanostatic Electrochemical Impedance Spectroscopy |
References
- Olarte, J.; Zulueta, E.; Ferret, R.; Kurt, E.; Martínez de Ilarduya, J.; Lopez-Guede, J.M. High temperature lead acid battery SOC and SOH characterization based on electrochemical impedance spectroscopy data. In Proceedings of the 2020 8th European Conference Renewable Energy Systems (ECRES 2020), Istanbul, Turkey, 24–25 August 2020. [Google Scholar]
- Olarte, J.; Romo, S.; Martínez de Ilarduya, J.; Ferret, R.; Pacios, R.; Bekaert, E.; Zulueta, E.; Pazos, F.; Ibarrondo, X.; Alonso, N. Optimización del TCO en baterías mediante monitorización en tiempo real del estado de salud con modelos avanzados. In Proceedings of the 2020 VII Congreso Smart Grids (Smart Grids 2020), Madrid, Spain, 16 December 2020. [Google Scholar]
- Krein, P.; Balog, R. Life extension through charge equalization of lead-acid batteries. In Proceedings of the 24th Annual International Telecommunications Energy Conference, Montreal, QC, Canada, 29 September–3 October 2002; pp. 516–523. [Google Scholar]
- Kumar, B.; Khare, N.; Chaturvedi, P.K. Fpga Design Scheme for Battery SOC & SOH Algorithms for Ad-vanced BMS. IJESRT 2017, 7, 263–279. [Google Scholar]
- Rivera-Barrera, J.P.; Muñoz-Galeano, N.; Sarmiento-Maldonado, H.O. SoC Estimation for Lithium-ion Batteries: Review and Future Challenges. Electronics 2017, 6, 102. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.-Y. The State of Charge Estimating Methods for Battery: A Review. ISRN Appl. Math. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W. State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles. Energies 2018, 11, 1820. [Google Scholar] [CrossRef] [Green Version]
- Lukic, S.M.; Jian, C.; Bansal, R.C.; Rodriguez, F.; Emadi, A. Energy Storage Systems for Automotive Appli-cations. IEEE Trans. Ind. Electron. 2008, 55, 2258–2267. [Google Scholar] [CrossRef]
- Karden, E.; Buller, S.; De Doncker, R.W. A method for measurement and interpretation of impedance spectra for industrial batteries. J. Power Sources 2000, 85, 72–78. [Google Scholar] [CrossRef]
- Keil, P.; Rumpf, K.; Jossen, A. Thermal impedance spectroscopy for Li-ion batteries with an IR temperature sensor system. In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17–20 November 2013. [Google Scholar]
- Raijmakers, L.; Danilov, D.; van Lammeren, J.; Lammers, M.; Notten, P. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy. J. Power Sources 2014, 247, 539–544. [Google Scholar] [CrossRef]
- Piller, S.; Perrin, M.; Jossen, A. Methods for state-of-charge determination and their applications. J. Power Sources 2001, 96, 113–120. [Google Scholar] [CrossRef]
- Meddings, N. Application of electrochemical impedance spectroscopy to commercial Liion cells: A review. J. Power Sources 2020, 480, 228742. [Google Scholar] [CrossRef]
- Alavi, S.; Birkl, C.; Howey, D. Time-domain fitting of battery electrochemical impedance models. J. Power Sources 2015, 288, 345–352. [Google Scholar] [CrossRef]
- Zou, C.; Zhang, L.; Hu, X.; Wang, Z.; Wik, T.; Pecht, M. A review of fractional-order techniques applied to lithiumion batteries, lead-acid batteries, and supercapacitors. J. Power Sources 2018, 390, 286–296. [Google Scholar] [CrossRef] [Green Version]
- Ramos, P.M.; Janeiro, F.M. Gene expression programming for automatic circuit model identification in im-pedance spectroscopy: Performance evaluation. Measurement 2013, 46, 4379–4387. [Google Scholar] [CrossRef]
- Chun, H.; Kim, J.; Han, S. Parameter identification of an electrochemical lithium-ion battery model with convolutional neural network. IFAC-PapersOnLine 2019, 52, 129–134. [Google Scholar] [CrossRef]
- Shahriari, M.; Farrokhi, M. Online State-of-Health Estimation of VRLA Batteries Using State of Charge. IEEE Trans. Ind. Electron. 2013, 60, 191–202. [Google Scholar] [CrossRef]
- Khare, N.; Chandra, S.; Govil, R. Statistical modeling of SoH of an automotive battery for online indication. In Proceedings of the INTELEC 2008—2008 IEEE 30th International Telecommunications Energy Conference, San Diego, CA, USA, 14–18 September 2008; pp. 1–7. [Google Scholar] [CrossRef]
- Sedighfar, A.; Moniri, M.R. Battery state of charge and state of health estimation for VRLA batteries using Kalman filter and neural networks. In Proceedings of the 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE), Istanbul, Turkey, 3–5 May 2018; pp. 41–46. [Google Scholar]
- Marrero, D.; Su, A. Extending the Battery Life of the ZigBee Routers and Coordinator by Modifying Their Mode of Operation. Sensors 2020, 20, 30. [Google Scholar] [CrossRef] [Green Version]
- Novais, S.; Nascimento, M.; Grande, L.; Domingues, M.F.; Antunes, P.; Alberto, N.; Leitão, C.; Oliveira, R.; Koch, S.; Kim, G.T.; et al. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors. Sensors 2016, 16, 1394. [Google Scholar] [CrossRef] [Green Version]
- Mateev, V.; Marinova, I.; Kartunov, Z. Gas Leakage Source Detection for Li-Ion Batteries by Distributed Sensor Array. Sensors 2019, 19, 2900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreiros dos Santos, M. Portable sensing system based on electrochemical impedance spectroscopy for the simultaneous quantification of free and total microcystin-LR in freshwaters. Biosens. Bioelectron. 2019, 142, 111550. [Google Scholar] [CrossRef]
- Luo, T.; Li, L.; Ghorband, V.; Zhan, Y.; Song, H.; Christen, J.B. A portable impedance-based electrochemical measurement device. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 2891–2894. [Google Scholar]
- Jiang, Z.; Yao, J.; Wang, L.; Wu, H.; Huang, J.; Zhao, T.; Takei, M. Development of a Portable Electrochemical Impedance Spectroscopy System for Bio-Detection. IEEE Sens. J. 2019, 19, 5979–5987. [Google Scholar] [CrossRef]
- Aksakal, C.; Şişman, A. On the Compatibility of Electric Equivalent Circuit Models for Enhanced Flooded Lead Acid Batteries Based on Electrochemical Impedance Spectroscopy. Energies 2018, 11, 118. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.-T.; Tran, V.-L.; Choi, W. Development of the intelligent charger with battery State-Of-Health estimation using online impedance spectroscopy. In Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, 1–4 June 2014; pp. 454–458. [Google Scholar]
- Kischkel, J. VRLA White Paper Lead Acid Battery and Its Internal Resistance; Panasonic Industry Europe GmbH: Bayern, Germany, 2008; Volume 11. [Google Scholar]
- Hariprakash, B.; Martha, S.K.; Shukla, A.K. Monitoring sealed automotive lead-acid batteries by sparse-impedance spectroscopy. J. Chem. Sci. 2003, 115, 465–472. [Google Scholar] [CrossRef]
- Kiel, M.; Sauer, D.U.; Turpin, P.; Naveed, M.; Favre, E. Validation of single frequency Z measurement for standby battery state of health determination. In Proceedings of the INTELEC 2008—2008 IEEE 30th International Telecommunications Energy Conference, San Diego, CA, USA, 14–18 September 2008; pp. 1–7. [Google Scholar]
Range | Accuracy | |
---|---|---|
Temperature | −20 to 60 °C | ±1.5 °C |
Voltage | 6 V to 15 V | ±6 mV |
Impedance | 10 mHz to 7 kHz | - |
Sensor VTZ—100 Ohm | Reference Gamry | |
---|---|---|
1 kHz Z real (Ω) | 0.0052 | 0.0027 |
1 kHz Z imaginary (Ω) | 0.0026 | −0.0003 |
Ordinate axis cut (Zimg = 0) | 0.0052 | 0.0027 |
Initial voltage (V) | 12.7236 | 12.8334 |
Final voltage (V) | 12.6927 | 12.8398 |
Sensor VTZ—50 Ohm | Reference Gamry | |
---|---|---|
1 kHz Z real (Ω) | 0.0045 | 0.0027 |
1 kHz Z imaginary (Ω) | 0.0017 | −0.0003 |
Ordinate axis cut (Zimg = 0) | 0.0047 | 0.0027 |
Initial voltage (V) | 12.4881 | 12.8334 |
Final voltage (V) | 12.4503 | 12.8398 |
Sensor VTZ—25 Ohm | Reference Gamry | |
---|---|---|
1 kHz Z real (Ω) | 0.0046 | 0.0027 |
1 kHz Z imaginary (Ω) | 0.0013 | −0.0003 |
Ordinate axis cut (Zimg = 0) | 0.0049 | 0.0027 |
Initial voltage (V) | 12.4371 | 12.8334 |
Final voltage (V) | 12.3852 | 12.8398 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olarte, J.; Martínez de Ilarduya, J.; Zulueta, E.; Ferret, R.; Fernández-Gámiz, U.; Lopez-Guede, J.M. A Battery Management System with EIS Monitoring of Life Expectancy for Lead–Acid Batteries. Electronics 2021, 10, 1228. https://doi.org/10.3390/electronics10111228
Olarte J, Martínez de Ilarduya J, Zulueta E, Ferret R, Fernández-Gámiz U, Lopez-Guede JM. A Battery Management System with EIS Monitoring of Life Expectancy for Lead–Acid Batteries. Electronics. 2021; 10(11):1228. https://doi.org/10.3390/electronics10111228
Chicago/Turabian StyleOlarte, Javier, Jaione Martínez de Ilarduya, Ekaitz Zulueta, Raquel Ferret, Unai Fernández-Gámiz, and Jose Manuel Lopez-Guede. 2021. "A Battery Management System with EIS Monitoring of Life Expectancy for Lead–Acid Batteries" Electronics 10, no. 11: 1228. https://doi.org/10.3390/electronics10111228
APA StyleOlarte, J., Martínez de Ilarduya, J., Zulueta, E., Ferret, R., Fernández-Gámiz, U., & Lopez-Guede, J. M. (2021). A Battery Management System with EIS Monitoring of Life Expectancy for Lead–Acid Batteries. Electronics, 10(11), 1228. https://doi.org/10.3390/electronics10111228