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Abstract: Sate of charge (SOC) accurate estimation is one of the most important functions in a battery
management system for battery packs used in electrical vehicles. This paper focuses on battery SOC
estimation and its issues and challenges by exploring different existing estimation methodologies.
The key technologies of lithium-ion battery state estimation methodologies of the electrical
vehicles categorized under five groups, such as the conventional method, adaptive filter algorithm,
learning algorithm, nonlinear observer, and the hybrid method, are explored in an in-depth analysis.
Lithium-ion battery characteristic, battery model, estimation algorithm, and cell unbalancing are
the most important factors that affect the accuracy and robustness of SOC estimation. Finally,
this paper concludes with the challenges of SOC estimation and suggests other directions for possible
research efforts.

Keywords: lithium-ion battery; sate of charge; estimation algorithm; battery management system;
electric vehicle

1. Introduction

The Nissan Altra EV was introduced as the first production lithium-ion battery electric vehicle
in 1997 [1]. The goals for EVs are to operate at a temperature from −30 to +52 ◦C with a driving
range of 300 miles per single charge and a use life of 15 years, according to the U.S. Advanced Battery
Consortium (USABC) [2]. Implementation of rechargeable batteries for electrical vehicles (EVs) has
become very popular because they can displace the consumption of fossil fuels and reduce the
emissions of greenhouse gas [3]. Lithium-ion batteries are widely adopted due to their high energy and
power density, high efficiency, high open-circuit cell voltage, broad temperature operating, and long
lifespan [4].

In 1980, John Goodenough [5] created the first lithium-ion batteries, which use lithium cobalt
oxide and lithium manganese dioxide as cathodes. Commercial lithium-ion batteries such as lithium
cobalt oxide (LCO), lithium iron phosphate (LFP), lithium manganese oxide (LMO), lithium nickel
manganese cobalt oxide (NMC), lithium nickel cobalt aluminum oxide (NCA), and lithium titanate
oxide (LTO) have been widely accepted by electric vehicles in recent years [6]. According to USABC,
today’s lithium-ion batteries cannot meet the standards of EVs. At present, lots of scholars, scientists,
and engineers are focusing on new battery research such as Li-O2 batteries [2,7], lithium–sulfur
batteries [8–14], lithium metal batteries [15,16], all-solid-state lithium batteries [17], al-ion batteries [18],
fuel cells [19–22], supercapacitors [23,24], and so on. Electric vehicles require a high power and
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high capacity for lithium-ion battery systems, thus demanding a battery management system to
ensure a reliable and safe operation [25]. Additionally, a battery model is very important in states
estimation of the model-based battery management system in EVs [26]. Haran [27] introduced
a single particle model in order to develop a lumped structure. A physics-based model can
predict microscopic behavior and performance, but requires a large computational power to solve
the differential equations [28]. Equivalent circuit models (ECMs) have also been proposed to
control-oriented purposes to estimate the electrical response and the amount of heat generation,
which are frequently used to model cells due to their simplicity, the fact that their parameters are
easy to obtain, and their real-time adaptability [28,29]. Various ECMs are now extensively used in EV
studies, such as the Rint [30], Thevenin [31], The Partnership for a New Generation of Vehicles,
(PNGV) [31], General nonlinear model (GNL) [32], and Resistance-Capacitance (RC)model [31].
In recent years, many new battery models have been put forward or improved, such as the fractional
order PNGV model [33], invariant imbedding method [34], improved equivalent-circuit model [35],
reduced order equivalent circuit battery models [36], fractional order impedance model [37–39],
fuzzy model [40], kinetic battery model (KIBaM) [41], electrochemical/electrical-thermal coupled
model [42], battery degradation model [42], and so on. The limitations of current battery technology
include underutilization, capacity fade, thermal runaway, and stress-induced material damage [28].

In such a large number of models, the first step is to accurately identify the parameters of the
model for battery state estimation. Two methods for battery model identification are electrochemical
impedance spectroscopy (EIS) and pulse tests [43]. Because these methods rely on specific equipment
for testing and processing large amounts of data, they are not suitable for online applications of electric
vehicles. Therefore, some researchers have proposed recursive least squares (RLS) methods or adaptive
filtering (AF) methods for on-line identification of battery model parameters [44]. Practice has proved
that these methods are easier to implement in on-line applications. Besides, these methods can help to
compensate for parameter values for battery variations and aging.

The state of the battery cell includes State of Charge (SOC) [45], State of Health (SOH) [46],
State of Energy (SOE) [47–49], and State of Power (SOP) [35,50]. In order to estimate these states of
batteries, the researchers need to put forward a new mathematical model or an algorithmic model
besides the battery model mentioned above. The well-known techniques include the Kalman filter
(KF) [51], extended Kalman filter (EKF) [52], unscented Kalman filter (UKF) [45], fading Kalman filter
algorithm(FKF) [53], strong tracking cubature extended Kalman filter (STCEKF) [54], multirate strong
tracking extended Kalman filter (MRSTEKF) [55], lazy extended Kalman filter (LEKF) [56], particle filter
(PF) [57], sliding mode observer (SMO) [58–63], H-infinity observer [64–67], Luenberger observer [68],
etc. The filter algorithms based on the equivalent circuit model with fixed model parameters are often
used to estimate the battery state. However, the parameters of the equivalent circuit model are often
affected by temperature, C-rate, SOC, and battery aging. Therefore, some joint-estimation methods
have been proposed to handle these problems. These methods are usually made up of two parts.
The first part is used to identify the parameters of the model with recursive least squares (RLS) on-line.
The second part is used to estimate the battery state parameters with filter algorithms. Recently,
because of the improvement of embedded hardware performance, some researchers have wanted to
estimate battery state only using data, instead of using battery models. The Artificial Intelligence (AI)
based learning approach including artificial neural network (ANN) modelling as well as the support
vector machine (SVM) was proposed [69], and could be very accurate depending on the training data.

In order to make a perfect EV, scientists, academics, researchers, and engineers have performed
much research to improve the accuracy of lithium-ion battery SOC estimation for EVs. In this paper,
the SOC estimation approaches and shortcomings of the EV battery system are reviewed. This paper
focuses on battery SOC estimation and its issues and challenges by exploring different existing
estimation methodologies. At the beginning of the article, the lithium-ion battery characteristics of the
EVs are reviewed. Following this, the common key technologies of battery state estimation are explored
in an in-depth analysis. Besides, the various SOC issues and challenges are also discussed. At the
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end of this article, the development direction of SOC is summarized. This review paper will be very
helpful for scientists, academics, researchers, engineers, and automobile engineers and manufacturers
for using the appropriate estimation method, which is especially important for the development of
implementing a new battery management system or upgrading the battery management system in
EVs in the future.

2. Lithium-Ion Battery

Lithium-Ion Battery

Compared with other materials, lithium ion batteries have the advantages of a high energy density,
high power density, long cycle life, strong environmental adaptability, and high cell voltage. However,
there are many kinds of lithium ion batteries, each of which has its own advantages, such as: LCO,
which has an important specific energy; LMO, which has a high specific power; NCA and NMC,
which are the cheaper lithium ion batteries and the most thermally stable; LFP, which has a flat OCV
curve but a low capacity and high self-discharging rate; and LTO, which has a long lifespan and fast
charge, but a low specific energy and higher cost [6]. Commercial lithium-ion batteries and their
characteristics are shown in Table 1.

A spider chart for LIBs with various anode and cathode materials is shown in Figure 1.
These batteries could be possible candidates use in EVs, because they could provide the possible
performance needed for automotive applications. C-rate is the current value required for the battery to
release its rated capacity within a specified time, which is equal to the multiple of the nominal capacity
of the battery. One part of the important characteristic was to test the capacity loss after cycling at low
and high C-rates while observing the heat generation during charging and discharging of the batteries.
Moreover, the battery thermal stability, specific power, and specific energy were also compared.
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Table 1. Comparison of various commercial lithium-ion batteries [70].

Battery Name Abbrev. Year Positive Electrode Negative
Electrode

Nominal
Tension (V)

Specific Energy
(Wh/kg) Charge (C) Discharge (C) Lifespan Thermal

Runaway (◦C)

Lithium cobalt oxide LCO since 1991 LiCoO2 Graphite 3.7~3.9 150~200 0.7~1 1 500~1000 150

Lithium nickel oxide LNO since 1996 LiNiO2 Graphite 3.6~3.7 150~200 0.7~1 1 >300 150

Lithium manganese oxide LMO since 1996 LiMn2O4 Graphite 3.7~4.0 100~150 0.7~1 1 300~700 250

Lithium nickel manganese
cobalt oxide NMC since 2008 Li(Ni0.33Co0.33Co0.33)O2 Graphite 3.8~4.0 150~220 0.7~1 1 1000~2000 210

Lithium iron phosphate LFP since 1993 LiFePO4 Graphite 3.2~3.3 90~130 1 1 1000~2000 270

Lithium nickel cobalt
aluminum oxide NCA since 1999 Li(Ni0.85Co0.05Al0.05)O2 Graphite 3.6~3.65 200~260 0.7 1 500 150

Lithium titanate LTO since 2008 LiMn2O4,
Li(Ni0.85Co0.05Al0.05)O2

Li4Ti5O12 2.3~2.5 70~85 1 10 3000~7000 -
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Figure 2 is a simplistic illustration for the safety operating window for a lithium-ion battery,
which suggests that there is a safety window of cell temperature and voltage. The lithium-ion
battery materials in a cell work best within a safe operating window that defines the safe temperature
and voltage range, as well as the maximum current that the cell can accept during discharge and
charging. According to Panchal’s research, the decomposition of LiFePO4 battery positive electrode
and negative electrode materials is high [71,72]. When the temperature becomes higher, the positive
material will start decomposing (LiCoO2 will start decomposing at temperature of about 150 ◦C,
LiNi0.8Co0.15Al0.05O2 at about 160 ◦C, LiNixCoyMnzO2 at about 210 ◦C, LiMn2O4 at about 265 ◦C,
and LiFePO4 at about 310 ◦C) and produce oxygen. When the temperature is above 200 ◦C, the battery
electrolyte will decompose and produce combustible gas [73]. Therefore, the heat management system
is also very important in the battery system of electric vehicles. It is necessary to study the battery heat
model and design a proper heating and cooling system for the battery [74].
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3. State of Charge Estimation Methods

Almost since the emergence of rechargeable batteries have systems that can indicate the available
capacity value of the battery inside existed, such as the single-meter device invented by Heyer [75]
in 1938. Curtis Instruments pioneered the development of gauges for monitoring the battery SOC of
traction vehicles in 1963. Finger et al. [76] invented a battery current flowing integrator module in
1975. Peled [77] proposed a method based on predetermined voltage and temperature measurements
relationship tables for the determination of lithium-ion batteries SOC in 1984. Aylor [78] presented a
coulomb counting method for LA batteries. Gerard [79] developed an artificial neural network method
for portable equipment battery state accurate estimation in 1997. Garche et al. [80] proposed a Kalman
filters method to estimation SOC in 2000. KIM [60] presented the state equation for battery models
and the systematic design approach for sliding mode observers in 2006. Tian [81] recently proposed
the implementation of an SOC estimator for lithium-ion batteries in a field programmable gate array
(FPGA). The most important points of the battery SOC estimation evolution are shown in Figure 3.
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According to the evolution history of battery SOC, it is known that when the rechargeable battery
appears, research on the SOC also appears. Until now, the SOC is still the hot point and key point
of research. The existing SOC estimation methodologies can also be categorized into five groups,
which are the conventional method, the adaptive filter algorithm, the learning algorithm, the nonlinear
observer, and the hybrid algorithm.

3.1. Conventional Method

The conventional method of SOC estimation consists of ampere-hour counting, the open circuit
voltage (OCV) method, the impedance and internal resistance method, the electrochemical method,
and the model-based method.

(1) Ampere-hour counting method

Ampere-hour counting is easy to implement with low computational complexity to estimate the
SOC of a battery [4]. The Ampere-hour (Ah) counting estimation method is used to integrate the
discharging or charging current to calculate the remaining charge in the battery, as follows [82]:

SOC(k) = SOC(0)− T
Cn

∫ k

0
(η·I(t)− Sd)dt

where SOC(0) is the battery initial SOC, I(t) is the current at time t, T is the sampling period, Cn is the
nominal capacity of the battery, η is the coulombic efficiency, and Sd is the self-discharging rate. For a
LiFePo4 battery, η > 0.994 under room temperature, the self-discharging rate is about 5% per month.

The biggest advantage of the Ah counting method is its low power computation cost, so it is
widely used for battery SOC estimation. But the disadvantage of the Ah counting method is that it
cannot remain accurate for a long time. The unknown initial SOC, capacity fading, self-discharge rate,
and current sensor errors are the error sources for the Ah counting method. In order to improve the
accuracy of the Ah method, the initial capacity and SOC value of the battery, and the current sensor
drift can be corrected and adjusted regularly [83].

(2) OCV method

OCV is the method that uses the stable battery electromotive force in the open circuit state and
SOC relationship to estimate the SOC value [83]. Although there is an approximate linear relationship
between SOC and OCV, this relationship is not exactly the same for different batteries. It depends on
the capacity and electrode material of the battery. For example, a lead-acid battery has a linear SOC and
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OCV relationship, while a lithium-ion battery does not have this relationship [4]. LFP batteries have a
very flat SOC-OCV relationship and a significant OCV hysteresis phenomenon. Thus, the OCV method
is not reliable in LFP batteries [84]. Although the SOC-OCV relationship of lithium ion batteries is
relatively stable, it will change according to the environmental temperature and cycle life of the battery.
In addition, in order to have a reliable SOC-OCV relationship, researchers and engineers may need to
conduct massive experiments at different temperatures and cycle lives [83].

Accurate SOC-OCV relationship data is the key issue for OCV method estimation depending
on the fitting OCV relaxation model parameters [85]. However, the OCV voltage cannot be directly
measured if there is no sufficient rest time. Direct use of the OCV method is employed to estimate SOC
which has a very low power computation and a relatively high accuracy, but this method is limited by
the working conditions. Therefore, it is generally used as a calibration auxiliary technology.

(3) Impedance and internal resistance method

The lithium-ion battery impedance and internal resistance can be used to describe the intrinsic
electric characteristic under any current excitation, if temperature, SOC, and SOH are fixed. But it is
very difficult to measure online electrical impedance spectroscopy (EIS), because sinusoidal alternating
current (AC) may be required, the SOC and impedance relationship is not stable, and the cost is
expensive [83]. To obtain the internal resistance, it needs direct current (DC) and the value of the
voltage and current at a small time interval. However, internal resistance changes slowly and is hard
to observe for SOC estimation. In general, SOC estimation based on the impedance and internal
resistance method is not suitable for use in EVs [83].

(4) Electrochemical method

Estimating the amount of Li or the average Li concentration in the positive or negative electrodes
is critical for SOC estimation based on the electrochemical model with partial differential equations.
The SOC can be directly calculated from Li amount identification in the negative or positive electrodes
of the electrochemical model. Nevertheless, the solution of partial differential equations is always too
complex for online applications [83]. Generally speaking, the electrochemical model can theoretically
obtain the most accurate SOC estimation. But, this model is only suitable for off-line design
and performance analysis for lithium-ion batteries. Nevertheless, due to the complexity of the
electrochemical model and the dozens of parameters of the battery model, this method is too difficult
to use for online SOC estimation [83].

(5) Model-based method

In the conventional method, the above methods are not unsatisfactory for online SOC values.
In order to achieve an accurate online SOC value, the battery models need to be developed. The most
common usage of battery models includes the electrochemical model and equivalent circuit model
(ECMs). ECMs mainly use resistances and RCs to simulate the electrical characteristics for lithium-ion
batteries. An ideal ECM should be able to simulate the actual battery voltage under any current
excitation. However, some characteristics of the lithium-ion batteries cannot be well represented by
circuit elements, such as the hysteresis effect or the Warburg effect. Therefore, pure mathematical
models with hysteresis are used to further improve the accuracy of voltage simulation [83].

Two technical routes are usually used to estimate SOC using ECM. The first method is a simple
way to estimate SOC directly through ECM parameter identification. The second method firstly uses a
predetermined SOC to realize OCV and then estimates the lithium-ion battery voltage through ECM.
Hence, the SOC-OCV relationship is very important not only in OCV method estimation, but also in
model-based method estimation [83].
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3.2. Adaptive Filter Algorithm

In order to improve the accuracy and robustness of the battery SOC estimation and reduce
the noise influence on the battery model, the adaptive filtering algorithm of modern control theory
provides another method for estimating the SOC. Figure 4 shows the flow chart of the adaptive filter
algorithm based on the modern control theory. As suggested in the flow chart, there are three basic
functions that need to be discussed. The first is how to use the battery SOC model to estimate a
predetermined SOC as an input for the models. The second is which model should calculate the battery
voltage at the predetermined SOC as an output for the models. The third is how to calculate the gain
to update the SOC by comparing the measured voltage and model voltage.
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estimation [83].

(1) Kalman filter

The Kalman filter is the optimum state estimator and intelligent tool for a linear system, and is
often used to estimate the battery dynamic state, such as that described in [4,51]. The most attractive
feature of KF is that it has a self-correcting nature when the system is running, which helps to tolerate
high variations. The Kalman filter algorithm is shown in Table 2. The KF linear state-space model
includes the process of predicting the current state from the earlier state and a measurement which
updates the current state to converge it to the real value.

Table 2. Kalman filter algorithm [51].

Linear state-space model
xk+1 = Akxk + Bkuk + wk

yk = Ckxk + Dkuk + vk
Initialization

For k = 0, set
x̂+0 = E[x0]

P+
x̂,0 = E[(x0 − x̂+0 )(x0 − x̂+0 )

T
]

Computation
For k = 1, 2, . . . compute

State estimate time update : x̂−0 = Ak−1 x̂+k−1 + Bk−1uk−1

Error covariance time update : P−x̂,0 = Ak−1P+
x̂,0 AT

k−1 + Qw

Kalman gain matrix : Kk = P−x̂,kCT
k [CkP−x̂,0CT

k + Rv]
T

State estimate measurement update:

x̂+k = x̂−k + Kk[yk − Ck x̂−k − Dkuk]

Error covariance measurement update:

P+
x̂,k = (I − KkCk)P−x̂,k
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According to Ting and Yatsui’s [86,87] research, researchers should use the KF method and
combine the open-circuit voltage and Ah counting to compensate for the non-ideal factors that can
prolong the operation of the battery. The advantage of the KF method is that it can accurately estimate
the states affected by external disturbances. Nonetheless, KF cannot be directly applied to the state
prediction of a nonlinear system and it requires complex calculations [4,88].

(2) Extended Kalman filter

If the system is nonlinear, then we can use a linearization process at each time step to approximate
the nonlinear system with a linear time varying (LTV) system. Then, the system is applied to the
Kalman filter, resulting in an extended Kalman filter (EKF) on the true nonlinear system applied for
the SOC estimation [44,51,52,82,89–95].

EKF linearized the battery model using partial derivatives and first order Taylor series expansion.
The state-space model is linearized at each time instance, which compares the predicted value with
its measured batteries terminal voltage to correct the estimation parameters for SOC. However, if the
system is highly non-linear, linearization error may occur due to the lack of accuracy in the first order
Taylor series under a highly non-linear condition [4]. The extended Kalman filter algorithm is shown
in Table 3.

Table 3. Summary of the extended Kalman filter algorithm [51].

Nonlinear state-space model
xk+1 = f (xk, uk) + wk

yk = g(xk, uk) + vk
Definitions

Âk =
∂ f (xk, uk)

∂xk

∣∣∣∣
xk=x̂+

k

, Ĉk =
∂g(xk, uk)

∂xk

∣∣∣∣
xk=x̂−k

Initialization

For k = 0, set
x̂+0 = E[x0]

P+
x̃,0 = E[(x0 − x̂+0 )(x0 − x̂+0 )

T
]

Computation

For k = 1, 2, . . . compute
State estimate time update : x̂−k = f (x̂+k−1, uk−1)

Error covariance time update : P−x̃,k = Âk−1P+
x̃,k−1 ÂT

k−1 + Qw

Kalman gain matrix : Kk = P−x̃,kĈT
k [ĈkP−x̃,kĈT

k + Rv]
T

State estimate measurement update:
x̂+k = x̂−k + Kk[yk − g(x̂−k , uk)]

Error covariance measurement update:
P+

x̃,k = (I − KkĈk)P−x̃,k

Because of the advantages of EKF, many researchers have applied this method to the study of
battery SOC, such as Lee et al. [96], who proposed dual EKF, and Chen et al. [97] and Zhu et al. [98],
who improved the nonlinear battery model with EKF to estimate the SOC of a lithium-ion battery.
Compared to other extended Kalman filter algorithms, the strong tracking cubature extended Kalman
filter (STCEKF) proposed by Gao et al. [54] gave an accurate SOC prediction and faster computational
time. J. Jia et al. [55] proposed a multirate strong tracking extended Kalman filter (MRSTEKF) by
introducing the multirate control strategy and lifting technology into a strong tracking extended
Kalman filter (STEKF) to improve the tracking stability and estimation precision of SOC. Result shows
that the MRSTEKF is faster than EKF and STEKF by 55.34% and 49.51%, and is more precise by 52.66%
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and 33.88%, respectively [55]. The advanced EKF method has a better performance than generality EKF,
KF, and the ampere-hour counting method in terms of effectiveness and dynamic adaptability [96–98].

(3) Adaptive extended Kalman filter

An adaptive extended Kalman filter (AEKF) is proposed in [95] using a modified second-order RC
network-based battery model and automatic correction of the process noise matrix and measurement
noise matrix to obtain a correct and robust lithium-ion battery. A summary of the adaptive extended
Kalman filter algorithm is shown in Table 4.

Table 4. Summary of the adaptive extended Kalman filter algorithm [99].

Nonlinear state-space model
xk+1 = f (xk, uk) + wk

yk = g(xk, uk) + vk
Definitions

Âk =
∂ f (xk, uk)

∂xk

∣∣∣∣
xk=x̂+

k

, Ĉk =
∂g(xk, uk)

∂xk

∣∣∣∣
xk=x̂−k

Initialization
For k = 0, set

x̂+0 = E[x0]

P+
x̃,0 = E[(x0 − x̂+0 )(x0 − x̂+0 )

T
]

Computation
For k = 1, 2, . . . compute

State estimate time update : x̂−k = f (x̂+k−1, uk−1)

Error covariance time update : P−x̃,k = Âk−1P+
x̃,k−1 ÂT

k−1 + Qk−1

Kalman gain matrix : Kk = P−x̃,kĈT
k [ĈkP−x̃,kĈT

k + Rk−1]
T

State estimate measurement update:
x̂+k = x̂−k + Kk[yk − g(x̂−k , uk)]

Error covariance measurement update:
P+

x̃,k = (I − KkĈk)P−x̃,k
For k ≥ N, compute

Residual sequence : vk = yk − g(x̂+k , uk)

Estimated variance− covariance of residual sequence : µ̂k = 1
N ∑k

j=k−N+1 vjvT
j

Process noise matrix update : Qk = Kk µ̂kKT
k

Measurement noise matrix update : Rk = µ̂k + Ck P+
x̃,kCT

k

Xiong et al. [100] built an online AEKF algorithm with the Thevenin model to estimate SOC.
This AEKF algorithm can reduce the SOC estimation error by 2%, validated by an urban dynamometer
driving schedule (UDDS). It shows that AEKF is better than EKF in regard to accuracy and reliability.

(4) Fading Kalman filter

The Fading Kalman filter (FKF) is insensitive to noise covariance variations and capable of
compensating for any modeling error, because it uses a fading factor that can limit its memory.
The Fading Kalman filter algorithm is shown in Table 5.
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Table 5. Summary of the Fading Kalman filter algorithm [53].

Linear state-space model
xk+1 = Akxk + Bkuk + wk

yk = Ckxk + Dkuk + vk
Initialization

For k = 0, set
x̂+0 = E[x0]

P+
x̂,0 = E[(x0 − x̂+0 )(x0 − x̂+0 )

T
]

Computation
For k = 1, 2, . . . compute

State estimate time update : x̂−k = Ak−1 x̂+k−1 + Bk−1uk−1

Error covariance time update : P−x̂,0 = Ak−1αP+
x̂,0 AT

k−1 + Qk

Kalman gain matrix : Kk = P−x̂,kCT
k [CkP−x̂,0CT

k + Rk]
T

State estimate measurement update:
x̂+k = x̂−k + Kk[yk − Ck x̂−k − Dkuk]

Error covariance measurement update:
P+

x̂,k = (I − KkCk)P−x̂,k

KaiChin Lim et al. [53] proposed an FKF to estimate the OCV and SOC. According to this study,
FKF can avoid the possibility of large estimation errors, which may occur when using the traditional
Kalman filter because of its capability to compensate for any modeling error through a fading factor.
The advantage of the Fading Kalman filter i that it can provide the feasibility and simplicity required
for real-time application with highly precise SOC estimation [53].

(5) Unscented Kalman filtering

The EKF method is good at the first and second order of a non-linear model, but is bad at a highly
non-linear state-space model. The Unscented Kalman filtering (UKF) algorithm is used to handle
this problem [83]. UKF is an updated version of EKF that applies a discrete-time filtering algorithm
and unscented transform to solve filtering problems. UKF based on unscented transformation was
proposed to avoid the weakness of Taylor series expansion compared to EKF [45,92,101]. The UKF
approach for SOC estimation is shown in Table 6.

Table 6. Summary of the Unscented Kalman filter approach for SOC estimation [102].

Non-linear state-space model
xk+1 = f (xk, uk) + wk

yk = g(xk, uk) + vk
Initialization

Measure ambient temperature, prepare UOCV(SOC, T) and R0, C0
Initial guess : S0
Covariance matrix : P0
Process and measurement noise covariance : Σw0 , Σv

Computation
For k = 1, 2, . . . compute

Generate sigma points at time k− 1, (k ∈ [l, . . . , ∞])

χk−1 =

[
Sk−1
Rk−1

]
= [χk−1, χk−1 +

√
(n + λ)Pk−1, χk−1 −

√
(n + λ)Pk−1]

Predict the prior state mean and covariance
Calculate sigma points through state function:

χi
k|k−1 =

[
Si

k|k−1
Ri

k|k−1

]
=

[
Si

k−1 −
Ik−1×∆t

Cn

Ri
k−1

]
, i = 1, . . . , 2n
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Table 6. Cont.

Calculate the prior mean and covariance:

χ̂−k = ∑2n
i=0 wi

mχi
k|k−1, P−k = ∑2n

i=0 wi
c

[
χi

k|k−1 − χ̂−k

][
χi

k|k−1 − χ̂−k

]T
+ Σw

Update using the measurement function
Calculate the sigma points : yk|k−1 = UOCV

(
SOCk|k−1, T

)
− Ik × R(T)k + C(T)

Calculate the propagated mean : ŷ−k = ∑2n
i=0 wi

myi
k|k−1

Calculate the covariance of the measurement:

Py−k ,y−k
= ∑2n

i=0 wj
c

[
yi

k|k−1 − ŷ−k
]T

+ Σv

Calculate the cross-covariance and the state and measurement:

Px−k ,y−k
= ∑2n

i=0 wi
c

[
χi

k|k−1 − χ̂−k

][
yi

k|k−1 − ŷ−k
]T

Compute filter gain and update and achieve the posterior SOC estimation
Compute the filter gain : Kk = Px−k ,y−k

P−1
y−k ,y−k

Update the posterior state mean : S+
k = S−k + Kk(yk − ŷ−k )

Update the posterior covariance : Pk = P−1
k + KkPy−k ,y−k

KT
k

(6) Sigma-point Kalman filter

The sigma-point Kalman filter (SPKF) is another method for the estimation of the states
in the non-linear system. SPKF depends on numeric approximations instead of EKF analytic
approximations [103,104]. The algorithm selects sets of sigma points, which is completely similar to the
value of mean and covariance of the model being developed. The sigma-point Kalman filter approach
for SOC estimation is shown in Table 7.

Table 7. Summary of the sigma-point Kalman filter for SOC estimation [103,104].

Non-linear state-space model
xk = f (xk−1, uk−1, wk−1, k− 1)

yk = g(xk, uk, vk, k)
Definitions: let

xa
k = [xT

k , wT
k , vT

k ]
T , χa

k = [(χx
k )

T , (χw
k )

T , (χv
k)

T ]
T

, p = 2× dim(xa
k)

Initialization
For k = 0, set

x̂+0 = E[x0]

x̂a,+
0 = E[xa

0] = [(x̂+0 )
T , w, v]

T

P+
x̂,0 = E[(x0 − x̂+0 )(x0 − x̂+0 )

T
]

Pa,+
x̂,0 = E[(xa

0 − x̂a,+
0 )(xa

0 − x̂a,+
0 )

T
] = diag(P+

x̂,0, Pw, Pv)

Computation
For k = 1, 2, . . . compute

State estimate time update

χa,+
k−1 =

{
x̂a,+

k−1, x̂a,+
k−1 + γ

√
Pa,+

x̂,k−1, x̂a,+
k−1 − γ

√
Pa,+

x̂,k−1

}
χx,−

k,i = f (χx,+
k−1,iuk−1, χw,−

k−1,i, k− 1)

x̂−k = ∑
p
i=0 α

(m)
i χx,−

k,i
Error covariance time update

P−x̃,k = ∑
p
i=0 α

(c)
i (χx,−

k,i − x̂−k )(χx,−
k,i − x̂−k )

T

Output estimate
Yk,i = g(χx,−

k,i , uk, χv,+
k−1,i, k)

ŷk = ∑
p
i=0 α

(m)
i Yk,i
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Table 7. Cont.

Estimator gain matrix
Px̃,k = ∑

p
i=0 α

(c)
i (Yk,i − ŷk)(Yk,i − ŷk)

T

P−x̃ỹ,k = ∑
p
i=0 α

(c)
i (χx,−

k,i − x̂−k )(Yk,i − ŷk)
T

Kk = Px̃ỹ,kP−1
x̃ỹ,k

State estimate measurement update
x̂+k = x̂−k + Kk(yk,i − ŷk)

Error covariance measurement update
Px̃,k = P−x̃,k − KkPỹ,kKT

k

He et al. [105] proposed a joint battery model and SOC estimation method based on the sigma
point Kalman filter. These reports show that the proposed combinatorial method only requires a very
small computational load and less memory storage to achieve effective results.

The advantages of using SPKF are that it has an identical calculation complexity to EKF without
considering Jacobian matrices. In SPKF, derivatives do not need to be calculated, the original functions
do not need to be differentiable, and the computational complexity is the same order as EKF, so the
gains are made at little or no additional cost and are theoretically more precise than EKF [103].

(7) Particle Filter (PF)

The Particle filter (PF) algorithm is used to estimate the states, which approximate the probability
density function of a non-linear system by using the Monte Carlo simulation technique [4]. Ruifeng
Zhang et al. [106] proposed a cubature particle filter (CPF) for accurate and reliable SOC estimation.
Min Ye [107] proposed double-scale dual particle filtering (D-PF) and a double-scale dual adaptive
particle filter (D-APF) for SOC estimation. However, the particle filter method has a higher computation.
The double-scale dual adaptive particle filter approach for SOC estimation is shown in Table 8.

Table 8. Summary of the double-scale dual adaptive particle filter for SOC estimation [107].

Non-linear state-space model
xk = f (x1,k−1, uk−1, θl−1) + w1,k−1

θl = θl−1 + w2,l−1

yk = g(x2,k−1, uk−1, θl−1) + vk−1
Initialization

k, j = 0, l = 0
Randomly generate N initial particles xi

0(i = 1, 2, . . . , N) for the state and initial particles
θi

0(i = 1, 2, . . . , M) for the parameter, and give an initial weight for every particle. Set the maximum
and minimum noise variances of each state.
State estimation

For k = 1, 2, . . . compute
Weight coefficient sampling : The weight coefficient of every particle is selected as follows :

wi
1,k = 1√

2πR1
exp
{
−(yk − yi

k)
2 1

2R1

}
Normalize the weight coefficients as follows : wi

1,k =
wi

1,k

∑N
i=1 wi

1,k

State estimation : x̂k = ∑N
i=1 wi

1,kxi
k

Evaluate the effective sample size : Ne f f1 = 1
∑N

i=1 (wi
1,k)

2 to evaluate the necessity or re-sampling

Parameter estimation (if k%L == 1 )
For l = l + 1 compute
Weight coefficient sampling : The weight coefficient of every particle is selected as follows :

wj
2,l =

1√
2πR2

exp
{
−(yk − yj

l)
2 1

2R2

}
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Table 8. Cont.

Normalize the importance of the weights as follows : wj
2,l =

wj
2,l

∑M
j=1 wj

2,l

Parameter estimation : θ̂l = ∑M
j=1 wj

2,lθ
j
l

Evaluate the effective sample size : Ne f f2 = 1
∑M

j=1 (wl
2,l)

2 to evaluate the necessity or re-sampling

Noise variance update for dual adaptive particle filter
Compute the demand value of the noise variance:

ex,k = 1
W ∑w

i=1 |x̂k − f (x̂i−1, ui−1, θk−1)|
eθ,l =

1
W ∑w

i=w
∣∣θ̂l − θ̂l−1

∣∣
Noise variance update:

σa,k =

{
min

(
ea,k, σa,max

)
i f ea,k > σa,k−1

max
(

βσa,k−1, σa,min
)

i f ea,k ≤ σa,k−1

σb,l =

{
min

(
eb,l , σb,max

)
i f eb,l > σb,l−1

max
(

βσb,l−1, σb,min
)

i f eb,l ≤ σb,l−1

(8) H∞ filter

The H∞ filter is a simple design model with a strong robustness under certain conditions.
However, hysteresis, aging, and temperature effects may deviate the accuracy of the model [4].
Charkhgard et al. [108] proposed a universal linear model using an adaptive H∞ filter (AHF) to
estimate SOC and compared it with the adaptive extended Kalman filter and square-root unscented
Kalman filter. The adaptive H∞ filter for SOC estimation is shown in Table 9.

Particle filter and observer methods can further improve the quality of the feedback gain,
leading to better SOC estimation. However, the particle filter and observer method have a higher
computational complexity compared to the Kalman filter method.

Table 9. Summary of the adaptive H∞ filter for SOC estimation [108].

State-space model
xk+1 = Akxk + Bkuk + wk

yk = Ckxk + Dkuk + vk

ζk = Lkxk
Definitions:

Ak , A(x̂k), Bk , B(x̂k), Ck , C(x̂−k ), Dk , D(x̂−k ),
Initialization

For k = 0, set
x̂+0 = E[x0]

P+
x̂,0 = R̂+

x̂,0 = Q̂+
x̂,0 = εI, ε� 1

Computation
For k = 1, 2, . . . compute

State estimate time update : x̂−k = Ak−1 x̂+k−1 + Bk−1uk−1

Error covariance time update : P−x̂,k = Ak−1P+
x̂,k AT

k−1 + Q̂k−1
Kalman gain matrix:

γok = α
√

σ(P−x̂,k), α > 1

Re,k =

[
R̂k−1 0

0 −γ2
ok I

]
+

[
Ck
Lk

]
P+

x̂,k[ CT
k LT

k ]

Kk = P−x̂,k[ CT
k LT

k ]R−1
e,k

Ks,k = P−x̂,kCT
k [CkP−x̂,kCT

k + R̂k−1]
−1
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Table 9. Cont.

State estimate measurement update:
x̂+k = x̂−k + Ks,k[yk − Ck x̂−k − Dkuk]

ζ̂k = Lk x̂+k
Error covariance measurement update:

P+
x̂,k = (I − Kk

[
Ck
Lk

]
)P−x̂,k

Adjusting weighing matrices:
v+j = yj − (Cj x̂−j − Djuj)

R̂+
x̂,k = 1

N ∑k
j=k−N+1

[
v+j v+j

T − CjP+
x̂,jCj

T
]

Q̂+
x̂,k = 1

N ∑k
j=k−N+1 [Ks,kvkvj

TKs,j
T + P+

x̂,j − Aj−1P+
x̂,j−1 Aj−1

T ]

In the summary of the SOC estimation method based on modern control theory, using the Ah
counting method, ECM, and the EKF algorithm, this estimation method could be quite reliable, with an
acceptable computational complexity for online applications. Therefore, it has become a widely studied
and implemented battery SOC estimation method.

3.3. Learning Algorithm

(1) Artificial Neural Network (ANN)

The artificial neural network (ANN) has the self-learning skills and adaptability to demonstrate
a complex non-linear model. ANN can use the training data to estimate SOC without knowing
information about the internal structure of the battery and initial SOC information. Generally, at least
three layers are used for the formation of an ANN algorithm, including an input layer, one or more
hidden layers, and an output layer. The structure of ANN for estimating SOC is shown in Figure 5.
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Usually, the ANN method uses the lithium-ion battery terminal voltage, discharge or charge
current, and ambient temperature as the input and SOC as the output. Ruifeng and Cui et al. [109]
proposed the Levenberg-Marquardt (L-M) algorithm optimized multi-hidden-layer wavelet neural
network (WNN) for SOC estimation. Xuanju Dang et al. [110] proposed the dual neural network
fusion battery model for SOC estimation. Shijie Tong et al. [111] proposed a new architecture for
SOC estimation using a load-classifying neural network and yielded a 3.8% average estimation error.
This method has a simpler model training procedure, broader choice of training data, and smaller
computational cost. Hicham Chaoui et al. [112] proposed an SOC and SOH estimation based on the
input time-delayed neural network (ITDNN) that accounts for both aging and temperature effects.
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This technique uses the multi-layer perceptron structure with the back-propagation (BP) learning rule
to adjust the intra-neuron connecting weights to yield accurate results.

The advantage of the ANN method is that it can operate in non-linear conditions. Nevertheless,
the algorithm needs to store large amounts of training data, which not only requires a super computing
power but also large memory storage in the whole system.

(2) Support Vector Machine (SVM)

SVM is the method that uses the regression algorithm to transform a lower dimension model into a
high dimension linear model [4]. SVM was first designed to solve the nonlinear two-class classification
problem [113]. The key point of SVM is to map the original sample from the low dimensional space to
high dimensional space so that a linear hyperplane can be found to separate samples from two classes,
as shown in Figure 6.
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Hanmin Sheng et al. [114] proposed an SOC estimation method based on the fuzzy least square
support vector machine. J.N. Hu et al. [113] proposed an SOC estimation based on an optimized SVM
for regression with a double search optimization process.

SVM architecture is simple and elegant, which used in the SOC estimation is time-consuming.
Moreover, it can have the ability to tolerate noise and be scalable to integrate knowledge from other
indicators such as temperature, power, etc.

(3) Extreme Machine Learning (ELM)

There are different ELM methods such as online-sequential ELM(OS-ELM), parallel chaos search
ELM(P-ELM), incremental-ELM(I-ELM), bidirectional-ELM(B-ELM), and the proposed adaptive
online-sequential ELM(AOS-ELM) that have been used to estimate the SOC of batteries in recent
year [113]. For example, Cheng Siong Chin et al. [113] proposed an adaptive online sequential
extreme learning machine (AOS-ELM) to estimate the battery SOC at different ambient temperatures.
According to the research, the ELM method can reduce the error and produce a faster computational
time. An example of ELM architecture is shown in Figure 7.
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(4) Genetic Algorithm (GA)

GA is an inspiration of the biological genetic process to find approximate optimal solutions.
Its basic function is to transform parameters in the most effective way, so as to enhance the efficiency of
the system. Basically, GA will randomly generate N chromosomes and imitate the process of biological
evolution, including selection, crossover, and mutations based on good individuals surviving and
breed good individuals to optimize the variables problem [115]. An example of the genetic algorithm
steps is shown in Figure 8.
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Xu et al. [116] used GA to optimize lithium-ion battery model parameters. Zheng Chen et al. [117]
proposed GA to estimate the battery model parameters by using battery current and voltage
measurements. Besides, the GA-based BP neural network approach proposed by Zuchang Gao [118]
shows that it can display a lower error range and higher value.

(5) Fuzzy logic (FL)

Fuzzy logic (FL) is another useful algorithm used to present a non-linear complex model with the
help of the appropriate training dataset. Adaptive neuro-fuzzy inference system (ANFIS) methods are
proposed to estimate lithium-ion batteries SOC, which are studied in [119–122]. Haifeng Dai et al. [123]
proposed a novel approach for online pack SOC estimation, which combines a traditional SOC
estimator and an ANFIS. This method has excellent adaptation to different current conditions and the
variations of the battery’s state, even with an aging process. Figure 9 graphically illustrates a basic
ANFIS structure with five layers.

Though fuzzy logic has a powerful ability to predict non-linear models, it requires complex
computations and large storage memory units, as well as an expensive processing unit.Energies 2018, 11, x FOR PEER REVIEW  18 of 35 
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3.4. Non-Linear Observer

Non-linear observers (NLO), sliding mode observer (SMO), and proportional-integral observer
(PIO) theories are proposed to estimate the SOC of lithium-ion batteries [58–63,124,125].

(1) Non-linear Observers (NLO)

Linear and non-linear observers have been used to estimate the system states. Linear observers
are commonly used, but will increase the SOC estimation error. Hence, the non-linear observer is
used in a linear system with non-linear observation mathematical equations [124]. Chaoren et al. [126]
proposed the SOC estimation method based on NLO. Ma et al. [127] proposed a novel state observer
based on input-to-state stability (ISS) theory for lithium-ion battery SOC estimation. The results show
that the proposed method has a high SOC estimation accuracy with an error of about 2%.

(2) Proportional-integral Observer (PIO)

PIO has been widely applied to the replacement of feedback control system [125]. The function of
a PIO controller is to converge the estimated voltage to the measured voltage in an accurate and fast
way. Jun Xu [128] proposed the PIO to estimate the SOC of lithium-ion batteries in EVs. The results
show that the error is limited to 2% compared with both unknown and known SOC cases by the UDDS
driving cycle. An example of the PIO algorithm for SOC estimation is shown in Figure 10.



Energies 2018, 11, 1820 19 of 36

Energies 2018, 11, x FOR PEER REVIEW  19 of 35 

 

 

Figure 10. An example of the PIO algorithm for SOC estimation [128]. 

Kim et al. [129] developed a battery SOC estimation based on the SMO method to compensate 
for the non-linear dynamic characteristics of the battery for hybrid electric vehicles. The proposed 
method was able to control the convergence time at a high value of charge or discharge value. UDDS 
is used to evaluate the performance of the methods and the results show that SOC error is less than 
3%. Ruifeng and Wenhui et al. [130] proposed a novel sliding mode observer for SOC estimation. 
Federal urban driving schedule (FUDS), the West Virginia suburban driving schedule (WVUSUB), 
and The New European driving cycle (NEDC) experiments are used to validate the performance of 
the proposed method. Experimental results show that the SOC estimation error is less than 3%. 

Compared with results of the EKF method, the SMO method has a faster convergence rate and 
higher estimation accuracy than the EKF method, but lower computational costs. 

3.5. Others and Hybrid Algorithm Method 

The hybrid algorithm method is composed of two more algorithms. It can improve the efficiency 
and accuracy of the battery model and avoid the shortcomings of a single algorithm. The hybrid 
algorithm method not only achieves reliable and effective results, but also reduces the cost of the 
battery management system. However, this method has a very complex mathematical calculation, 
which requires a large storage memory and computing power unit. 

(1) EKF-Ah algorithm 

Choosing a suitable algorithm is a very important step in estimating SOC. However, in order to 
improve the accuracy of SOC estimation, the dependence on hardware and cost implications should 
also be considered. The EKF-Ah optimal estimation algorithm adopted by Qianqian et al. [131] is 
shown in Table 10, which relies on the current integration method to optimize the estimation with 
the observation value. Compared with the current integration method, the EKF-Ah algorithm 
overcomes the interference of the initial value on SOC estimation. 

  

Figure 10. An example of the PIO algorithm for SOC estimation [128].

The PI method has a simple structure and is easy to implement. Hence, this method has a high
efficiency and high precision.

(3) Sliding Mode Observer (SMO)

SMO can guarantee the stability and robustness of the system against model uncertainties and
environmental disturbances [58–63]. The model is established by using the state equation as the output
state and a feedback switching gain is designed to control the sliding regime to ensure the robustness
of tracking control.

Kim et al. [129] developed a battery SOC estimation based on the SMO method to compensate
for the non-linear dynamic characteristics of the battery for hybrid electric vehicles. The proposed
method was able to control the convergence time at a high value of charge or discharge value. UDDS is
used to evaluate the performance of the methods and the results show that SOC error is less than
3%. Ruifeng and Wenhui et al. [130] proposed a novel sliding mode observer for SOC estimation.
Federal urban driving schedule (FUDS), the West Virginia suburban driving schedule (WVUSUB),
and The New European driving cycle (NEDC) experiments are used to validate the performance of the
proposed method. Experimental results show that the SOC estimation error is less than 3%.

Compared with results of the EKF method, the SMO method has a faster convergence rate and
higher estimation accuracy than the EKF method, but lower computational costs.

3.5. Others and Hybrid Algorithm Method

The hybrid algorithm method is composed of two more algorithms. It can improve the efficiency
and accuracy of the battery model and avoid the shortcomings of a single algorithm. The hybrid
algorithm method not only achieves reliable and effective results, but also reduces the cost of the
battery management system. However, this method has a very complex mathematical calculation,
which requires a large storage memory and computing power unit.
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(1) EKF-Ah algorithm

Choosing a suitable algorithm is a very important step in estimating SOC. However, in order to
improve the accuracy of SOC estimation, the dependence on hardware and cost implications should
also be considered. The EKF-Ah optimal estimation algorithm adopted by Qianqian et al. [131] is
shown in Table 10, which relies on the current integration method to optimize the estimation with the
observation value. Compared with the current integration method, the EKF-Ah algorithm overcomes
the interference of the initial value on SOC estimation.

Table 10. Summary of the EKF-Ah algorithm for SOC estimation [131].

State-space model
xk = f (xk−1, uk−1) + wk−1

yk = g(xk, uk) + vk
Initialization

For k = 0, set
x̂+0 = E[x0]

P+
x̂,0 = E[(x0 − x̂+0 )(x0 − x̂+0 )

T
]

Computation
For k = 1, 2, . . . compute

State estimate time update : x̂−k = Ak−1 x̂+k−1 + Bk−1uk−1

Error covariance time update : P−x̂,k = Ak−1P+
x̂,k AT

k−1 + Γk,k−1Q̂k−1ΓT
k,k−1

Kalman gain matrix : Kk = P−x̃,kĈT
k [ĈkP−x̃,kĈT

k + Rk−1]
−1

State estimate measurement update:
x̂+k = x̂−k + Kk[yk − g(x̂+k , uk)]

Error covariance measurement update:
P+

x̂,k = (I − KkCk)P−x̂,k

(2) Adaptive Unscented Kalman Filter and Support Vector Machine

Jinhao et al. [132] proposed a highly accurate algorithm for lithium polymer battery SOC
estimation based on adaptive unscented Kalman filters (AUKF) and least square support vector
machines (LSSVM). A summary of AUKF-LSSVM for SOC estimation is shown in Table 11.

This chapter summarizes the estimation of SOC including coulomb counting, the OCV method,
Impedance and internal resistance method, Kalman family and filter method, learning algorithm
method, non-linear observer method, hybrid algorithm method, and others [133–135]. In addition
to the above estimation methods, there are still other methods in the study, such as a mixture of the
Kalman and H∞ filters method, mixture of SMO and the adaptive Luenberger method, the RBF-PF
algorithm, and so on. To verify the advantages and disadvantages of an estimation algorithm, one of
the key factors is to test the error of the result. The summary of SOC estimation error is shown in
Table 12. There are many reasons for estimated result error in the actual use, such as work environment,
hardware, software code technology, battery dynamic hysteresis characteristics, self-discharge, battery
aging process, temperature impact, C rate, and cell imbalance, which may lead to a decline in battery
performance, so it is not enough to judge the advantages and disadvantages of the algorithm by
error alone.
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Table 11. Summary of AUKF-LSSVM for SOC estimation [131].

State-space and LSSVMmodel
Xk = f (Xk, ik) + qk = Xk −

η
Qn
·∆t·ik + qk

Zk+1 = H(Xk, ik) + rk

H(Xk, ik) =
l

∑
i=1

akK
(

xj, ij

)
+ b

Initialization
For k = 0, set

x̂+0 = E[x0]

P+
x̂,0 = E[(x0 − x̂+0 )(x0 − x̂+0 )

T
]

Computation
Generate sigma points and weighting coefficients at time k− 1, (k ∈ [l, . . . , ∞])

χ̃0 = χ̂k−1

χ̃
(i)
k−1 = χ̂k−1 +

(√
(n + λ)Pk−1

)
i

χ̃
(j)
k−1 = χ̂k−1 −

(√
(n + λ)Pk−1

)
j−n

W(0)
m = λ/(n + λ)

W(0)
c = λ/(n + λ) + 1− α2 + β

W(i)
m = W(i)

c = λ/[2(n + λ)]
Prediction and correction:

For k = 1, 2, . . . compute
State estimate time update:

χ̃
(i)
k|k−1 = f

(
χ̃
(i)
k|k−1, ik

)
χ̂k−1 =

2n
∑

i=0
W(i)

m ·χ
(i)
k|k−1

P−x,k|k−1 =
2n
∑

i=0
W(i)

c

[
χ
(i)
k|k−1 − χ̂k−1

][
χ
(i)
k|k−1 − χ̂k−1

]T
+ qk−1

Z(i)
k|k−1 = H

(
χ̂k|k−1, ik

)
Ẑk−1 =

2n
∑

i=0
W(i)

m ·Z
(i)
k|k−1

Correction update

Py,k =
2n
∑

i=0
W(i)

c

[
Z(i)

k|k−1 − Ẑk−1

][
Z(i)

k|k−1 − Ẑk−1

]T
+ rk−1

Pxy,k =
2n
∑

i=0
W(i)

c

[
X(i)

k|k−1 − X̂k−1

][
X(i)

k|k−1 − X̂k−1

]T

Kk = Pxy,kP−1
y,k

χ̂k = χ̂k|k−1 + Kk(Zk − Ẑk|k−1)

Pk = P−1
x,k|k−1 − KkPy,kKk

T

Adjustment process:
εk = Zk − H(χ̂k, ik)

ck = ∑k
i=k−L+1 εkεk

T

L

rk = ck +
2n+1

∑
i=0

W(i)
c

[
Z(i)

k|k−1 − Zk + ck

][
Z(i)

k|k−1 − Zk + ck

]T

qk = KkckKk
T
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Table 12. Maximum absolute error of different SOC methods.

Method Model Conditions Battery MAE Author Ref

EMF - - NMC ≤2% Wladislaw Waag et al. [85]

KF 1RC CC Li-ion battery ≤1.76% Yatsui and Bai [87]

DEKF Li-ion battery Lee et al. [96]

FKF 1RC UDDS
Real driving cycle LiFePO4 ≤2%

≤3% KaiChin Lim et al. [53]

EKF 2RC UDDS and HWFET Li-ion battery ≤3% Chen et al. [97]

AEKF 1RC UDDS Li-ion battery ≤2% Xiong et al. [100]

UKF Rint FUDS LiFePO4 ≤2.16% Yinjiao Xing et al. [102]

SPKF ESC UDDS LiPB ≤0.49% Gregory L. Plett et al. [103]

DPF
DAPF Thevenin model UDDS NMC

≤2.27%
≤1.33%
(MSE)

Min Ye et al. [107]

AHF - - Li-ion battery ≤0.84% Mohammad
Charkhgard et al. [108]

PSO-SVR
ANN - Real driving cycle LiFePO4 ≤0.17%

≤0.25% Hanmin Sheng et al. [114]

Fuzzy-LSSVM - Real driving cycle LiFePO4 ≤0.5% Hanmin Sheng et al. [114]

GA 1RC UDDS Li-ion battery ≤1% Jun Xu et al. [116]

ANFIS - FTP75/J1015/EUDC Li-ion battery More
reasonable Haifeng Dai et al. [123]

NLO 2RC - Li-ion battery ≤2% Ma et al. [127]

PIO 1RC UDDS Li-ion battery ≤2% Jun Xu et al. [128]

SMO 2RC FUDS/NEDC/WVUSUB NMC ≤3% Ruifeng et al. [130]

4. SOC Issues and Challenges

The accuracy of SOC estimation in a battery system is necessary and important. For the battery
cell, an accurate SOC can provide precise parameters to make a batter lithium-ion battery cell.
For the EV battery systems, an accurate SOC can prevent the battery from over-discharge and charge,
thus ensuring battery system safety, making more efficient use of the limited energy, and extending the
battery life. Specifically, it can support the precise calculation of the vehicle driving range, provide a
better discharging or charging strategy, improve the efficiency of other power sources, and make
balance strategies work more effectively. The lithium-ion battery SOC estimation in EVs has become a
major challenge due to its complex electrochemical reactions and performance degradation caused by
various factors [4].

In order to improve the accuracy, stability, robustness, economy, and other challenges of the
SOC estimation algorithm in electric vehicles, these issues, such as lithium-ion battery hysteresis
characteristic, battery model, aging, estimation algorithm, and cell unbalancing, are worth studying in
depth and are also solutions to solve SOC estimation problems.

4.1. Lithium-Ion Battery Hysteresis Characteristic

Due to the lithium-ion battery having a polarization phenomenon, this phenomenon will lead to
the battery dynamic hysteresis characteristics. Because of battery dynamic hysteresis characteristics,
the OCV curve of the charging and discharging process is different, as shown in Figure 11. The battery
OCV of the charging process is higher than discharging.
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Figure 11. SOC-OCV curves under the charge and discharge process.

Thus, the SOC-OCV curve is not consistent with the charge and discharge. Even for a battery
under the same discharge/charge, the SOC-OCV curve performance is very different under different
temperature conditions, as shown in Figure 12. Furthermore, the SOC-OCV curve will be drifting
when the battery ages. There are also great differences in SOC-OCV under different material systems.
For example, the SOC-OCV platform of LiFePO4 is very flat, which will bring some error to the accurate
estimation of SOC. SOC-OCV characteristics under different temperatures and aging at different SOCs
are shown in Figure 13.
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cell; (B) LTO cell; (C) NCM cell; (D) LTO cell [83].

The SOC-OCV curve drifting after two calendar years of ageing is shown in Figure 14. In order to
overcome the challenges of aging, Lavigne et al. [136] proposed a two stage lithium-ion OCV curve
model to estimate battery SOC.
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4.2. Lithium-Ion Battery Model

The state parameters of positive and negative electrodes, such as electricity, OCV, impedance,
internal resistance, and Li amount, are related to the SOC estimation of lithium-ion batteries.
In order to realize the identification of these parameters and estimate the battery state, a battery
model is needed. A lithium-ion battery model can be classified as an electrochemical model,
physical model, equivalent circuit model (ECMs), thermal model, coupled electro-thermal model,
and so on. Among them, ECMs are the most commonly used in lithium-ion batteries SOC estimation
for EV applications due to their simple model structure.

ECMs such as the Rint model, Thevenin model, PNGV model, GNL, n RC model, and FOM
(Fractional Order Model), are shown in Figure 15. The Rint model is very simple to implement in
real time. However, the model’s output equation expressed is only a rough estimate actual terminal
voltage of the battery, which may lead to large uncertainties in SOC estimates [30]. The Thevenin
model connects a parallel RC network in series based on the Rint model [31]. The PNGV model
can be used to describe the changing of open circuit voltage generated in the time accumulation of
load current by adding a capacitor in series based on the Thevein model [31]. The GNL nonlinear
equivalent circuit battery model takes into account the influence of the self-discharge on characteristics
of the battery [137]. The nRC consists of an n parallel RC network in series based on the Thevenin
model in order to considering dynamic voltage performances [138]. In order to conquer the traditional
ECMs shortcoming and guarantee the optimal trade-off between model complexity and computation
efficiency, the fractional order model impedance model is studied by [37].

These battery ECM models and equations are summarized in Table 13.

Table 13. Battery ECM models and equations.

Model Equation

Rint Ut = Uoc − IR0

Thevenin

{ .
U1 = I

C1
− U1

R1C1

Ut = UOC −U1 − IR0

PNGV


.

Ub = U′oc
.

U1 = I
C1
− U1

R1C1

Ut = UOC −Ub −U1 − IR0

GNL



.
Ub = U′oc
.

U1 = I
C1
− Ub

C1Rs
−
(

U1
C1Rs

+ U1
C1R1

)
− U2

C1Rs
− Uoc

C1Rs

.
U2 = I

C2
− Ub

C2Rs
−
(

U2
C2Rs

+ U2
C2R2

)
− U1

C2Rs
− Uoc

C2Rs

Ut = UOC −Ub −U1 −U2 − IR0

n RC


.

UDi = − 1
RDiCDi

UDi +
1

CDi
IL

Ut = Uoc −
n
∑

i=1
UDi − ILR0

FOM


Dn1
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Figure 15. The commonly used battery electrical equivalent circuit model.

Different battery anode-cathode material systems have different properties. Therefore,
different battery models are needed to simulate different types of batteries. Battery modeling has an
important influence on SOC estimation. Establishing a battery model is a challenge, because of the
complex electrochemical and dynamic environment. Each model may lack accuracy and adaptability
to use in different operating conditions. In addition, the battery hysteresis effect is not considered in
many ECMs. So, we need to develop a suitable battery model that can work accurately under different
load conditions.

4.3. Lithium-Ion Battery Aging

Due to battery aging, SOC could not be accurately estimated. Degradation of internal resistance
and capacitance, and available power fade are the main factors leading to battery aging. Main aging
causes for Li-ion batteries are the decomposition of solid electrolyte interphase (SEI), deposition at
the anode, metal dissolution from the anode, the loss of active material, and lithium plating [139].
The analysis of the reasons for battery aging is shown in Figure 16.
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4.4. Estimation Algorithm

Figure 17 approximately demonstrates the estimation error and computational complexity of
the SOC estimation methods, according to the estimation algorithm study. Compared to the six
SOC estimation families, the Ah counting estimation method, based on the OCV estimation method
and based on the ECM model, and the filter algorithms estimation method are the main three SOC
estimation families, which are currently applicable EVs for online applications [83].

At present, the most potential and most widely used SOC estimation algorithm in the battery
management system of electric vehicles is a hybrid algorithm based on the combination of the
equivalent circuit model and the Kalman filter algorithm family. The most significant error source of
this method is that the voltage and current sensor drifts the battery model shortcoming, for which the
influence of the variable effect are not enough, for example, the aging, temperature, and hysteresis
effect. Thus, we should focus on these error factors, and solve the sensor drift, aging, temperature,
and hysteresis effect problems.

Other measurements, such as the ultrasound velocity [140], magnetic field intensity [141],
or mechanical stress [142] can also be used for some special SOC estimation in research. Nevertheless,
the feasibility is poor because additional sensors are needed. Besides, the accuracy is also questionable.
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4.5. Cell Unbalancing

In the application of electric vehicles, the battery system is made up of numerous single
cells in series and parallel. Because of the difference in the complex chemical composition,
manufacturing process, environment temperature, and operating conditions of each cell, cell imbalance
can be caused by the use process. Using the same estimation algorithm to estimate the SOC value of all
battery cell or module will also bring greater error to the overall SOC estimation accuracy of the electric
vehicle. The control strategy and the management mode of the battery system are affected. Therefore,
in addition to improving the estimation accuracy of the battery cell, it is necessary to effetely monitor
the state of each cell and precise control cell balance to improve the overall estimation accuracy of the
SOC of the electric vehicle so that electric vehicle battery pack can deliver energy for long periods and
safety [4]. In order to simulate the battery pack model efficiently, Zuchang Gao et al. [143] proposed
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prototyping a simulation model to determine the SOC and temperature of the battery working in a
real world environment.

5. Conclusions

The paper describes the evolution of battery SOC estimation and various SOC estimation family
algorithms were reviewed. The development and deployment of an EVs battery management system
with the state estimation of SOC has been a major challenge as a result of the complex electrochemical
reactions and performance degradation caused by a variety of factors. Battery dynamic hysteresis
characteristics, self-discharge, ambient temperature, battery aging, C rate, and cell unbalancing are the
other reasons responsible for the accuracy of SOC estimation. SOC estimation based on ECMs with
the KF family method should pay more attention to the sensor drift and battery OCV hysteresis effect
instead of using a more complicated algorithm according to this paper study.

Because of the severe demand of electric vehicles, the variety of battery developments will become
more and more, and the electrochemical components and performance of all kinds of batteries are
different, which will bring a lot of uncertainty and challenges to the general SOC estimation. In order
to improve the research and application of electric vehicle battery estimation, two kinds of basic
accumulation are essential. On one hand, it is needed to establish a full-type and full-life cycle test
database, but this method will occupy a lot of time and cost; on the other hand, it is used to establish a
foundation based battery simulation and verification tool, including the simulation software tool from
the battery cell simulation, the battery model module simulation, the battery estimation simulation,
to the battery heat management simulation, in order to accelerate the battery from the cell prototype
design to the pack practical application. Although the battery simulation and verification base tool
will include a high cost and long time, it is very meaningful and worthy of our research in the future.
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Nomenclature

Acronyms
A Ampere
Ah Ampere-hour
AI Artificial Intelligence
EV Electrical Vehicle
BMS Battery Management System
BTMS Battery Thermal Management System
CC Constant Current
CCCV Constant Current-Constant Voltage
CKF Cubature Kalman Filter
CV Constant Voltage
EIS Electrochemical Impedance Spectroscopy
EKF Extend Kalman filter
EMC Equivalent Circuit Model
EUDC Extra Urban Driving Cycle
EV Electric Vehicle
HPPC The Hybrid Power Pulse Characteristics
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KF Kalman Filter
LCO Lithium cobalt oxide
LMO Lithium Manganese Oxide
LFP Lithium Iron Phosphate
LTO Lithium Titanium Oxide
NEDC New European Driving Cycle
NCA Nickel Cobalt Aluminum
NMC Nickel Manganese Cobalt
OCV Open-Circuit Voltage
MRSTEKF Multirate Strong Tracking Extended Kalman Filter
PF Particle Filter
P2D Pseudo-two-Dimensional
SMO Sliding Mode Observer
SOC State of Charge
SOE State of Energy
SOH State of Health
SOP State of Power
SPKF Sigma-point Kalman Filter
STCEKF Strong Tracking Cubature Extended Kalman Filter
SVM Support Vector Machine
UKF Unscented Kalman Filter
V Volt
Symbols
α Fading factor
β Attenuation factor
σ Standard deviation of the noise variance
Cn Nominal capacity of the battery
I Load current
k Time step
Qw, Rv Gaussian noise processes of covariance matrices
Sd Self-discharging rate
t Time
T Sampling period
xk Stated equation
yk Output equation
uk, wk System and process noise
η Coulombic efficiency
Subscript
min Minimum value
max Maximum value
Abbreviations
UDDS Urban Dynamometer Driving Schedule
USABC U.S. Advanced Battery Consortium
FPGA Field Programmable Gate Array
RMSE Root Mean Square Error
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