Rosmarinic Acid Multifunctional Sunscreen: Comet Assay and In Vivo Establishment of Cutaneous Attributes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Composition of the Formulations
2.2.2. In Vitro Assay
In Vitro Evaluation of DNA Fragmentation of Human Cells Exposed to UV Radiation by the Comet Assay Method
2.2.3. In Vivo Assays
Subjects
Skin Biocompatibility
Anti-Inflammatory Activity
2.3. Statistical Analysis
3. Results
3.1. In Vitro Evaluation of DNA Fragmentation of Human Cells Exposed to Ultraviolet Radiation by the Comet Assay Method
3.2. In Vivo Skin Biocompatibility
3.3. In Vivo Anti-Inflammatory Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bar-Or, D.; Bar-Or, R.; Rael, L.T.; Brody, E.N. Oxidative Stress in Severe Acute Illness. Redox Biol. 2015, 4, 340–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sime, S.; Reeve, V.E. Protection from Inflammation, Immunosuppression and Carcinogenesis Induced by UV Radiation in Mice by Topical Pycnogenol®. Photochem. Photobiol. 2004, 79, 193. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Liu, Y.; Fu, L.-M.; Ai, X.-C.; Zhang, J.-P.; Skibsted, L.H. Antioxidants and Physical Integrity of Lipid Bilayers under Oxidative Stress. J. Agric. Food Chem. 2012, 60, 10331–10336. [Google Scholar] [CrossRef] [PubMed]
- Svobodova, A.; Walterova, D.; Vostalova, J. Ultraviolet Light Induced Alteration to the Skin. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2006, 150, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Pinnell, S.R.; Carolina, N. Cutaneous Photodamage, Oxidative Stress, and Topical Antioxidant Protection. J. Am. Acad. Dermatol. 2003, 48, 1–22. [Google Scholar] [CrossRef]
- Sleem, F.; Afaq, F.; Mukhtar, H. Photochemoprevention of Skin Cancer by Botanical Agents. Photodermatol. Photoimmunol. Photomed. 2003, 19, 56–72. [Google Scholar]
- Han, R.M.; Zhang, J.P.; Skibsted, L.H. Reaction Dynamics of Flavonoids and Carotenoids as Antioxidants. Molecules 2012, 17, 2140–2160. [Google Scholar] [CrossRef] [Green Version]
- Svobodová, A.; Psotová, J.; Walterová, D. Natural Phenolics in the Prevention of UV-Induced Skin Damage. A Review. Biomed. Pap. 2003, 147, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Seité, S.; Fourtanier, A.M.A. The Benefit of Daily Photoprotection. J. Am. Acad. Dermatol. 2008, 58, S160–S166. [Google Scholar] [CrossRef]
- Swisłocka, R.; Regulska, E.; Karpinska, J.; Swiderski, G.; Lewandowski, W. Molecular Structure and Antioxidant Properties of Alkali Metal Salts of Rosmarinic Acid. Experimental and DFT Studies. Molecules 2019, 24, 2645. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M. Rosmarinic Acid: New Aspects. Phytochem. Rev. 2013, 12, 207–227. [Google Scholar] [CrossRef]
- Abdullah Al-Dhabi, N.; Valan Arasu, M.; Ha Park, C.; Un Park, S. Guest Editorial: Recent studies on rosmarinic acid and its biological and pharmacological activities. Excli J. 2014, 13, 1192–1195. [Google Scholar]
- Fernando, P.M.D.J.; Piao, M.J.; Kang, K.A.; Ryu, Y.S.; Hewage, S.R.K.M.; Chae, S.W.; Hyun, J.W. Rosmarinic Acid Attenuates Cell Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells. Biomol. Ther. 2016, 24, 75–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Campillo, M.; Gabaldon, J.A.; Castillo, J.; Benavente-García, O.; Del Baño, M.J.; Alcaraz, M.; Vicente, V.; Alvarez, N.; Lozano, J.A. Rosmarinic Acid, a Photo-Protective Agent against UV and Other Ionizing Radiations. Food Chem. Toxicol. 2009, 47, 386–392. [Google Scholar] [CrossRef]
- Cândido, T.M.; Ariede, M.B.; Lima, F.V.; Guedes, L.D.S.; Velasco, M.V.R.; Baby, A.R.; Rosado, C. Dietary Supplements and the Skin: Focus on Photoprotection and Antioxidant Activity—A Review. Nutrients 2022, 14, 1–15. [Google Scholar]
- Candido, T.M.; Ariede, M.B.; Pinto, C.A.S.d.O.; Lourenço, F.R.; Rosado, C.; Velasco, M.V.R.; Baby, A.R. Prospecting In Vitro Antioxidant and Photoprotective Properties of Rosmarinic Acid in a Sunscreen System Developed by QbD Containing Octyl p -Methoxycinnamate. Cosmetics 2022, 9, 29. [Google Scholar] [CrossRef]
- Ladeira, M.S.P.; Rodrigues, M.A.M.; Freire-Maia, D.V.; Salvadori, D.M.F. Use of Comet Assay to Assess DNA Damage in Patients Infected by Helicobacter Pylori: Comparisons between Visual and Image Analyses. Mutat. Res. Toxicol. Environ. Mutagen. 2005, 586, 76–86. [Google Scholar] [CrossRef]
- Berardesca, E.; Loden, M.; Serup, J.; Masson, P.; Rodrigues, L.M. The Revised EEMCO Guidance for the in Vivo Measurement of Water in the Skin. Ski. Res. Technol. 2018, 24, 351–358. [Google Scholar] [CrossRef]
- Elias, P.M. The Skin Barrier as an Innate Immune Element. Semin. Immunopathol. 2007, 29, 3–14. [Google Scholar] [CrossRef]
- Oliveira, C.A.d.; Peres, D.D.A.; Graziola, F.; Chacra, N.A.B.; de Araújo, G.L.B.; Flórido, A.C.; Mota, J.; Rosado, C.; Velasco, M.V.R.; Rodrigues, L.M.; et al. Cutaneous Biocompatible Rutin-Loaded Gelatin-Based Nanoparticles Increase the SPF of the Association of UVA and UVB Filters. Eur. J. Pharm. Sci. 2016, 81, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pinnagoda, J.; Tupkek, R.A.; Agner, T.; Serup, J. Guidelines for Transepidermal Water Loss (TEWL) Measurement: A Report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermat. 1990, 22, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Viciolle, E.; Castilho, P.; Rosado, C. In Vitro and in Vivo Assessment of the Effect of Laurus Novocanariensis Oil and Essential Oil in Human Skin. Int. J. Cosmet. Sci. 2012, 34, 546–550. [Google Scholar] [CrossRef]
- Pérez-Sánchez, A.; Barrajón-Catalán, E.; Caturla, N.; Castillo, J.; Benavente-García, O.; Alcaraz, M.; Micol, V. Protective Effects of Citrus and Rosemary Extracts on UV-Induced Damage in Skin Cell Model and Human Volunteers. J. Photochem. Photobiol. B Biol. 2014, 136, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Amoah, S.K.S.; Sandjo, L.P.; Kratz, J.M.; Biavatti, M.W. Rosmarinic Acid—Pharmaceutical and Clinical Aspects. Planta Med. 2016, 82, 388–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furtado, R.A.; de Araújo, F.R.R.; Resende, F.A.; Cunha, W.R.; Tavares, D.C. Protective Effect of Rosmarinic Acid on V79 Cells Evaluated by the Micronucleus and Comet Assays. J. Appl. Toxicol. 2009, 30, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Bacanlı, M.; Aydın, S.; Taner, G.; Göktaş, H.; Şahin, T.; Başaran, A.; Başaran, N. Does Rosmarinic Acid Treatment Have Protective Role against Sepsis-Induced Oxidative Damage in Wistar Albino Rats? Hum. Exp. Toxicol. 2016, 35, 877–886. [Google Scholar] [CrossRef]
- Pérez-Sánchez, A.; Barrajón-Catalán, E.; Herranz-López, M.; Castillo, J.; Micol, V. Lemon Balm Extract (Melissa officinalis, L.) Promotes Melanogenesis and Prevents UVB-Induced Oxidative Stress and DNA Damage in a Skin Cell Model. J. Dermatol. Sci. 2016, 84, 169–177. [Google Scholar] [CrossRef]
- Psotova, J.; Svobodova, A.; Kolarova, H.; Walterova, D. Photoprotective Properties of Prunella Vulgaris and Rosmarinic Acid on Human Keratinocytes. J. Photochem. Photobiol. B 2006, 84, 167–174. [Google Scholar] [CrossRef]
- Leite e Silva, V.R.; Schulman, M.A.; Ferelli, C.; Gimenis, J.M.; Ruas, G.W.; Baby, A.R.; Velasco, M.V.R.; Taqueda, M.E.; Kaneko, T.M. Hydrating Effects of Moisturizer Active Compounds Incorporated into Hydrogels: In Vivo Assessment and Comparison between Devices. J. Cosmet. Dermatol. 2009, 8, 32–39. [Google Scholar] [CrossRef]
- Lodén, M. The Clinical Benefit of Moisturizers. J. Eur. Acad. Dermatol. Venereol. 2005, 19, 672–688. [Google Scholar] [CrossRef] [PubMed]
- Tomazelli, L.C.; de Assis Ramos, M.M.; Sauce, R.; Cândido, T.M.; Sarruf, F.D.; de Oliveira Pinto, C.A.S.; de Oliveira, C.A.; Rosado, C.; Velasco, M.V.R.; Baby, A.R. SPF Enhancement Provided by Rutin in a Multifunctional Sunscreen. Int. J. Pharm. 2018, 552, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Ruscinc, N.; Morocho-Jácome, A.L.; Martinez, R.M.; Magalhães, W.V.; Escudeiro, C.C.; Giarolla, J.; Rosado, C.; Velasco, M.V.R.; Baby, A.R. Vaccinium Myrtillus L. Extract Associated with Octocrylene, Bisoctrizole, and Titanium Dioxide: In Vitro and in Vivo Tests to Evaluate Safety and Efficacy. J. Cosmet. Dermatol. 2022, 21, 4765–4774. [Google Scholar] [CrossRef] [PubMed]
- Sauce, R.; Pinto, C.A.S.d.O.; Velasco, M.V.R.; Rosado, C.; Baby, A.R. Ex Vivo Penetration Analysis and Anti-Inflammatory Efficacy of the Association of Ferulic Acid and UV Filters. Eur. J. Pharm. Sci. 2021, 156, 105578. [Google Scholar] [CrossRef]
- Sauce, R.; Pinto, C.A.S.d.O.; Ayala-Jara, C.; Prieto, Z.A.; Velasco, M.V.R.; Baby, A.R. Preliminary Protocol Development of a Hplc-Tbars-Evsc (Ex Vivo Stratum Corneum) Assay for Skin Research: Application in a Sunscreen System. Sci. Pharm. 2021, 89, 17. [Google Scholar] [CrossRef]
- de Oliveira, C.A.; Dario, M.F.; Sarruf, F.D.; Mariz, I.F.A.; Velasco, M.V.R.; Rosado, C.; Baby, A.R. Safety and Efficacy Evaluation of Gelatin-Based Nanoparticles Associated with UV Filters. Colloids Surf. B Biointerfaces 2016, 140, 531–537. [Google Scholar] [CrossRef]
- Erkan, N.; Ayranci, G.; Ayranci, E. Antioxidant Activities of Rosemary (Rosmarinus Officinalis L.) Extract, Blackseed (Nigella Sativa L.) Essential Oil, Carnosic Acid, Rosmarinic Acid and Sesamol. Food Chem. 2008, 110, 76–82. [Google Scholar] [CrossRef]
- Hitl, M.; Kladar, N.; Gavarić, N.; Božin, B. Rosmarinic Acid-Human Pharmacokinetics and Health Benefits. Planta Med. 2021, 87, 273–282. [Google Scholar] [CrossRef]
- Marcílio Cândido, T.; Bueno Ariede, M.; Vieira Lima, F.; de Souza Guedes, L.; Robles Velasco, M.V.; Rolim Baby, A.; Rosado, C. Dietary Supplements and the Skin: Focus on Photoprotection and Antioxidant Activity—A Review. Nutrients 2022, 14, 1248. [Google Scholar] [CrossRef]
- Bispo, M.D.O. Eficácia Fotoprotetora Do Ácido Rosmarínico Associado a Filtros UVA e UVB; Faculty of Pharmaceutical Sciences, University of São Paulo: São Paulo, Brazil, 2021. [Google Scholar]
- Majewska, N.; Zaręba, I.; Surażyński, A.; Galicka, A. Methylparaben-Induced Decrease in Collagen Production and Viability of Cultured Human Dermal Fibroblasts. J. Appl. Toxicol. 2017, 37, 1117–1124. [Google Scholar] [CrossRef]
- Matwiejczuk, N.; Galicka, A.; Zareba, I.; Brzóska, M.M. The Protective Effect of Rosmarinic Acid against Unfavorable Influence of Methylparaben and Propylparaben on Collagen in Human Skin Fibroblasts. Nutrients 2020, 12, 1282. [Google Scholar] [CrossRef] [PubMed]
- Pattananandecha, T.; Apichai, S.; Julsrigival, J.; Ungsurungsie, M.; Kawasaki, N.; Saenjum, C. UVA-Irradiated Human Fibroblasts of Rosmarinic Acid Enriched Extract Prepared from Thunbergia laurifolia Leaves. Plants 2021, 10, 1648. [Google Scholar] [CrossRef]
- Sethi, B.; Sahdev, A.K.; Purwar, S. Development, Optimization Characterization and in Vitro Study of Rosmarinic Acid Phytovesicles. Res. J. Pharm. Technol. 2019, 12, 5231–5239. [Google Scholar] [CrossRef]
- Rodríguez-Luna, A.; Talero, E.; Ávila-Román, J.; Romero, A.M.F.; Rabasco, A.M.; Motilva, V.; González-Rodríguez, M.L. Preparation and In Vivo Evaluation of Rosmarinic Acid-Loaded Transethosomes After Percutaneous Application on a Psoriasis Animal Model. AAPS PharmSciTech 2021, 22, 103. [Google Scholar] [CrossRef]
- Campos, D.A.; Madureira, A.R.; Gomes, A.M.; Sarmento, B.; Pintado, M.M. Optimization of the Production of Solid Witepsol Nanoparticles Loaded with Rosmarinic Acid. Colloids Surf. B Biointerfaces 2014, 115, 109–117. [Google Scholar] [CrossRef]
- Veras, K.S.; Fachel, F.N.S.; Teixeira, H.F.; Koester, L.S. Technological Strategies Applied for Rosmarinic Acid Delivery through Different Routes—A Review. J. Drug Deliv. Sci. Technol. 2022, 68, 103054. [Google Scholar] [CrossRef]
- Casanova, F.; Estevinho, B.N.; Santos, L. Preliminary Studies of Rosmarinic Acid Microencapsulation with Chitosan and Modified Chitosan for Topical Delivery. Powder Technol. 2016, 297, 44–49. [Google Scholar] [CrossRef]
- Perra, M.; Fancello, L.; Castangia, I.; Allaw, M.; Escribano-Ferrer, E.; Peris, J.E.; Usach, I.; Manca, M.L.; Koycheva, I.K.; Georgiev, M.I.; et al. Formulation and Testing of Antioxidant and Protective Effect of Hyalurosomes Loading Extract Rich in Rosmarinic Acid Biotechnologically Produced from Lavandula angustifolia Miller. Molecules 2022, 27, 2423. [Google Scholar] [CrossRef]
Compounds (% w/w) | |||
---|---|---|---|
Formulation | Rosmarinic Acid | Octyl p-methoxycinnamate | Bemotrizinol |
F1 | - | - | - |
F2 | 1.0 | - | - |
F3 | - | 7.5 | 10.0 |
F4 | 1.0 | 7.5 | 10.0 |
Assay | Sample | Time after First Application | Mean ± Standard Deviation (Ratio) | p-Value |
---|---|---|---|---|
Superficial hydration (Corneometer) | F1 | 30 min | 1.405 ± 0.070 | 0.000 |
7 days | 1.356 ± 0.266 | 0.022 | ||
F2 | 30 min | 1.285 ± 0.242 | 0.034 | |
7 days | 1.363 ± 0.401 | 0.077 | ||
F3 | 30 min | 1.557 ± 0.306 | 0.007 | |
7 days | 1.435 ± 0.332 | 0.024 | ||
F4 | 30 min | 1.312 ± 0.141 | 0.003 | |
7 days | 1.328 ± 0.381 | 0.089 | ||
TEWL/Transepidermal water loss (Tewameter) | F1 | 30 min | 1.554 ± 0.337 | 0.010 |
7 days | 1.702 ± 0.727 | 0.065 | ||
F2 | 30 min | 1.692 ± 0.635 | 0.044 | |
7 days | 1.168 ± 0.516 | 0.462 | ||
F3 | 30 min | 1.591 ± 0.598 | 0.060 | |
7 days | 1.493 ± 0.494 | 0.058 | ||
F4 | 30 min | 2.213 ± 1.137 | 0.048 | |
7 days | 1.891 ± 0.727 | 0.030 | ||
a* (redness) (Chromameter) | F1 | 30 min | 1.007 ± 0.143 | 0.904 |
7 days | 1.045 ± 0.153 | 0.502 | ||
F2 | 30 min | 1.001 ± 0.079 | 0.967 | |
7 days | 1.044 ± 0.063 | 0.150 | ||
F3 | 30 min | 0.986 ± 0.037 | 0.386 | |
7 days | 1.056 ± 0.079 | 0.140 | ||
F4 | 30 min | 0.993 ± 0.046 | 0.709 | |
7 days | 1.054 ± 0.078 | 0.153 | ||
Skin pH value (pH meter) | F1 | 30 min | 0.994 ± 0.063 | 0.819 |
7 days | 0.977 ± 0.089 | 0.560 | ||
F2 | 30 min | 0.993 ± 0.043 | 0.703 | |
7 days | 0.983 ± 0.079 | 0.617 | ||
F3 | 30 min | 1.028 ± 0.082 | 0.446 | |
7 days | 1.010 ± 0.102 | 0.813 | ||
F4 | 30 min | 1.040 ± 0.062 | 0.179 | |
7 days | 1.028 ± 0.077 | 0.414 |
Parameter | Sample | Mean ± Standard Deviation (Ratio) | p-Value |
---|---|---|---|
Area under the curve | F2 | 1.572 ± 1.280 | 0.169 |
F3 | 1.020 ± 0.575 | 0.910 | |
F4 | 1.235 ± 0.993 | 0.451 | |
Tangent | F2 | 1.918 ± 1.273 | 0.038 |
F3 | 1.280 ± 0.862 | 0.307 | |
F4 | 1.741 ± 1.600 | 0.155 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cândido, T.M.; Ariede, M.B.; Pinto, C.A.S.d.O.; Lima, F.V.; Magalhães, W.V.; Pedro, N.M.E.; Padovani, G.; Sufi, B.d.S.; Rijo, P.; Velasco, M.V.R.; et al. Rosmarinic Acid Multifunctional Sunscreen: Comet Assay and In Vivo Establishment of Cutaneous Attributes. Cosmetics 2022, 9, 141. https://doi.org/10.3390/cosmetics9060141
Cândido TM, Ariede MB, Pinto CASdO, Lima FV, Magalhães WV, Pedro NME, Padovani G, Sufi BdS, Rijo P, Velasco MVR, et al. Rosmarinic Acid Multifunctional Sunscreen: Comet Assay and In Vivo Establishment of Cutaneous Attributes. Cosmetics. 2022; 9(6):141. https://doi.org/10.3390/cosmetics9060141
Chicago/Turabian StyleCândido, Thalita Marcílio, Maíra Bueno Ariede, Claudinéia Aparecida Sales de Oliveira Pinto, Fabiana Vieira Lima, Wagner Vidal Magalhães, Natália Mencacci Esteves Pedro, Giovana Padovani, Bianca da Silva Sufi, Patrícia Rijo, Maria Valéria Robles Velasco, and et al. 2022. "Rosmarinic Acid Multifunctional Sunscreen: Comet Assay and In Vivo Establishment of Cutaneous Attributes" Cosmetics 9, no. 6: 141. https://doi.org/10.3390/cosmetics9060141
APA StyleCândido, T. M., Ariede, M. B., Pinto, C. A. S. d. O., Lima, F. V., Magalhães, W. V., Pedro, N. M. E., Padovani, G., Sufi, B. d. S., Rijo, P., Velasco, M. V. R., Rosado, C., & Baby, A. R. (2022). Rosmarinic Acid Multifunctional Sunscreen: Comet Assay and In Vivo Establishment of Cutaneous Attributes. Cosmetics, 9(6), 141. https://doi.org/10.3390/cosmetics9060141