Skin Sensitization Testing: The Ascendancy of Non-Animal Methods
Abstract
:1. Skin Sensitization Testing—A Short History
2. The Guinea Pig Era
3. The Mouse Era
4. New Approach Methods for Skin Sensitization Testing
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Jadassohn, J. Zur kenntnis der Arzneiexantheme. Arch. Dermatol. Forsch. 1896, 34, 103–106. [Google Scholar]
- Draize, J.H.; Woodward, G.; Calvery, H.Q. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J. Pharmacol. Exp. Ther. 1944, 82, 377–390. [Google Scholar]
- Johnson, A.W.; Goodwin, B.F. The Draize test and modifications. Curr. Probl. Dermatol. 1985, 14, 31–38. [Google Scholar] [CrossRef]
- Sharp, D.W. The sensitization potential of some perfume ingredients tested using a modified draize procedure. Toxicology 1978, 9, 261–271. [Google Scholar] [CrossRef]
- Andersen, K.E.; Maibach, H.I. Guinea pig sensitization assays. An overview. Curr. Probl. Dermatol. 1985, 14, 263–290. [Google Scholar] [CrossRef]
- Thyssen, J.P.; Giménez-Arnau, E.; Lepoittevin, J.P.; Menné, T.; Boman, A.; Schnuch, A. The critical review of methodologies and approaches to assess the inherent skin sensitization potential (skin allergies) of chemicals. Part II. Contact Dermat. 2012, 66 (Suppl. 1), 25–52. [Google Scholar] [CrossRef]
- Thyssen, J.P.; McFadden, J.P.; Kimber, I. The multiple factors affecting the association between atopic dermatitis and contact sensitization. Allergy 2014, 69, 28–36. [Google Scholar] [CrossRef]
- Buehler, E.V. Delayed hypersensitivity testing in guinea pigs. Arch. Dermatol. 1965, 91, 171–177. [Google Scholar] [CrossRef]
- Magnusson, B.; Kligman, A.M. The identification of contact allergens by animal assay. The guinea pig maximization test. J. Investig. Dermatol. 1969, 52, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Kimber, I.; Hilton, J.; Weisenberger, C. The murine local lymph node assay for identification of contact allergens: A preliminary evaluation of in situ measurement of lymphocyte proliferation. Contact Dermat. 1989, 21, 215–220. [Google Scholar] [CrossRef]
- Kimber, I.; Dearman, R.J.; Scholes, E.W.; Basketter, D.A. The local lymph node assay: Developments and applications. Toxicology 1994, 93, 13–31. [Google Scholar] [CrossRef]
- Gerberick, G.F.; Ryan, C.A.; Kimber, I.; Dearman, R.J.; Lea, L.J.; Basketter, D.A. Local lymph node assay: Validation assessment for regulatory purposes. Am. J. Contact Dermat. 2000, 11, 3–18. [Google Scholar] [CrossRef]
- Dean, J.H.; Twerdok, L.E.; Tice, R.R.; Sailstad, D.M.; Hattan, D.G.; Stokes, W.S. ICCVAM evaluation of the murine local lymph node assay. Conclusions and recommendations of an independent scientific peer review panel. Regul. Toxicol. Pharm. 2001, 34, 258–273. [Google Scholar] [CrossRef] [PubMed]
- Kimber, I.; Basketter, D. Contact sensitization: A new approach to risk assessment. Hum. Ecol. Risk Assess. 1997, 3, 385–395. [Google Scholar] [CrossRef]
- Basketter, D.A.; Andersen, K.E.; Liden, C.; Van Loveren, H.; Boman, A.; Kimber, I.; Alanko, K.; Berggren, E. Evaluation of the skin sensitizing potency of chemicals by using the existing methods and considerations of relevance for elicitation. Contact Dermat. 2005, 52, 39–43. [Google Scholar] [CrossRef]
- Basketter, D.A.; Clapp, C.; Jefferies, D.; Safford, B.; Ryan, C.A.; Gerberick, F.; Dearman, R.J.; Kimber, I. Predictive identification of human skin sensitization thresholds. Contact Dermat. 2005, 53, 260–267. [Google Scholar] [CrossRef]
- Gerberick, G.F.; Robinson, M.K.; Felter, S.P.; White, I.R.; Basketter, D.A. Understanding fragrance allergy using an exposure-based risk assessment approach. Contact Dermat. 2001, 45, 333–340. [Google Scholar] [CrossRef]
- Basketter, D.A.; Gerberick, G.F.; Kimber, I. Skin sensitisation, vehicle effects and the local lymph node assay. Food Chem. Toxicol. 2001, 39, 621–627. [Google Scholar] [CrossRef]
- Api, A.M.; Basketter, D.A.; Cadby, P.A.; Cano, M.F.; Ellis, G.; Gerberick, G.F.; Griem, P.; McNamee, P.M.; Ryan, C.A.; Safford, R. Dermal sensitization quantitative risk assessment (QRA) for fragrance ingredients. Regul. Toxicol. Pharm. 2008, 52, 3–23. [Google Scholar] [CrossRef]
- Api, A.M.; Basketter, D.; Bridges, J.; Cadby, P.; Ellis, G.; Gilmour, N.; Greim, H.; Griem, P.; Kern, P.; Khaiat, A.; et al. Updating exposure assessment for skin sensitization quantitative risk assessment for fragrance materials. Regul. Toxicol. Pharm. 2020, 118, 104805. [Google Scholar] [CrossRef]
- Shelanski, H.A.; Shelanski, M.V. A new technique of human patch tests. Proc. Sci. Sect. Toilet Goods Assoc. 1953, 19, 46–49. [Google Scholar]
- Marzulli, F.N.; Maibach, H.I. The use of graded concentrations in studying skin sensitizers: Experimental contact sensitization in man. Food Cosmet. Toxicol. 1974, 12, 219–227. [Google Scholar] [CrossRef]
- Marzulli, F.N.; Maibach, H.I. Effects of vehicles and elicitation concentration in contact dermatitis testing. I. Experimental contact sensitization in humans. Contact Dermat. 1976, 2, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Stotts, J. Planning, conduct and interpretation of human predictive sensitization patch tests. Curr. Concepts Cutan. Toxic. 1980, 41, 41–53. [Google Scholar]
- McNamee, P.M.; Api, A.M.; Basketter, D.A.; Frank Gerberick, G.; Gilpin, D.A.; Hall, B.M.; Jowsey, I.; Robinson, M.K. A review of critical factors in the conduct and interpretation of the human repeat insult patch test. Regul. Toxicol. Pharm. 2008, 52, 24–34. [Google Scholar] [CrossRef]
- Kligman, A.M. The identification of contact allergens by human assay. 3. The maximization test: A procedure for screening and rating contact sensitizers. J. Investig. Dermatol. 1966, 47, 393–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kligman, A.M.; Epstein, W. Updating the maximization test for identifying contact allergens. Contact Dermat. 1975, 1, 231–239. [Google Scholar] [CrossRef]
- SCCS. Memorandum on Use of Human Data in Risk Assessment of Skin Sensitization. 2015. Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_s_010.pdf (accessed on 26 March 2022).
- Basketter, D.A. The human repeated insult patch test in the 21st century: A commentary. Cutan. Ocul. Toxicol 2009, 28, 49–53. [Google Scholar] [CrossRef]
- OECD. The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins; OECD: Paris, France, 2014. [Google Scholar]
- OECD. Test No. 442E: In Vitro Skin Sensitisation; OECD: Paris, France, 2018. [Google Scholar]
- OECD. Guideline No. 497: Defined Approaches on Skin Sensitisation; OECD: Paris, France, 2021. [Google Scholar]
- OECD. Test No. 442D: In Vitro Skin Sensitisation; OECD: Paris, France, 2018. [Google Scholar]
- OECD. Test No. 442C: In Chemico Skin Sensitisation; OECD: Paris, France, 2021. [Google Scholar]
- Basketter, D.A.; Gerberick, G.F. An interlaboratory evaluation of the Buehler test for the identification and classification of skin sensitizers. Contact Dermat. 1996, 35, 146–151. [Google Scholar] [CrossRef]
- Robinson, M.K.; Nusair, T.L.; Fletcher, E.R.; Ritz, H.L. A review of the Buehler guinea pig skin sensitization test and its use in a risk assessment process for human skin sensitization. Toxicology 1990, 61, 91–107. [Google Scholar] [CrossRef]
- Kligman, A.M.; Basketter, D.A. A critical commentary and updating of the guinea pig maximization test. Contact Dermat. 1995, 32, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Bruze, M.; Dahlquist, I.; Fregert, S.; Gruvberger, B.; Persson, K. Contact allergy to the active ingredients of Kathon CG. Contact Dermat. 1987, 16, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Hayakawa, R.; Sugiura, M.; Kojima, H.; Konishi, H.; Ichihara, G.; Takeuchi, Y. Experimental study on skin sensitization potencies and cross-reactivities of hair-dye-related chemicals in guinea pigs. Contact Dermat. 2000, 42, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Basketter, D.A.; Goodwin, B.F. Investigation of the prohapten concept. Cross reactions between 1,4-substituted benzene derivatives in the guinea pig. Contact Dermat. 1988, 19, 248–253. [Google Scholar] [CrossRef]
- Basketter, D.A.; Kimber, I. Skin sensitization, false positives and false negatives: Experience with guinea pig assays. J. Appl. Toxicol. 2010, 30, 381–386. [Google Scholar] [CrossRef]
- Basketter, D.A.; Gerberick, F.; Kimber, I. The local lymph node assay and the assessment of relative potency: Status of validation. Contact Dermat. 2007, 57, 70–75. [Google Scholar] [CrossRef]
- Api, A.M. The Use of Human Data When Conducting Dermal Sensitization Quantitative Risk Assessments for Fragrance Ingredients. Regul. Toxicol. Pharm. 2008, 50, 163–165. [Google Scholar]
- Basketter, D.; Safford, B. Skin sensitization quantitative risk assessment: A review of underlying assumptions. Regul. Toxicol. Pharm. 2016, 74, 105–116. [Google Scholar] [CrossRef]
- EU. Commission regulation (EU) 2016/1688 of 20 September 2016 amending Annex VII to Regulation (EC) No 1907/2006 of the European Parliament and of the council on the Registration. Off. J. Eur. Communities 2016, 255, 1–3. [Google Scholar]
- Sauer, U.G.; Hill, E.H.; Curren, R.D.; Raabe, H.A.; Kolle, S.N.; Teubner, W.; Mehling, A.; Landsiedel, R. Local tolerance testing under REACH: Accepted non-animal methods are not on equal footing with animal tests. Altern. Lab. Anim. 2016, 44, 281–299. [Google Scholar] [CrossRef]
- Ezendam, J.; Braakhuis, H.M.; Vandebriel, R.J. State of the art in non-animal approaches for skin sensitization testing: From individual test methods towards testing strategies. Arch. Toxicol. 2016, 90, 2861–2883. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, K.; Hoffmann, S.; Alepee, N.; Ashikaga, T.; Barroso, J.; Elcombe, C.; Gellatly, N.; Galbiati, V.; Gibbs, S.; Groux, H.; et al. Systematic evaluation of non-animal test methods for skin sensitisation safety assessment. Toxicol. Vitro 2015, 29, 259–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desprez, B.; Dent, M.; Keller, D.; Klaric, M.; Ouédraogo, G.; Cubberley, R.; Duplan, H.; Eilstein, J.; Ellison, C.; Grégoire, S.; et al. A strategy for systemic toxicity assessment based on non-animal approaches: The Cosmetics Europe Long Range Science Strategy programme. Toxicol. Vitro 2018, 50, 137–146. [Google Scholar] [CrossRef]
- Bernauer, U.; Bodin, L.; Chaudhry, Q.; Coenraads, P.J.; Dusinska, M.; Ezendam, J.; Gaffet, E.; Galli, C.L.; Granum, B.; Panteri, E.; et al. The SCCS Notes of Guidance for the testing of cosmetic ingredients and their safety evaluation, 11th revision, 30–31 March 2021, SCCS/1628/21. Regul. Toxicol. Pharmacol. 2021, 127, 105052. [Google Scholar] [CrossRef] [PubMed]
- Parish, S.T.; Aschner, M.; Casey, W.; Corvaro, M.; Embry, M.R.; Fitzpatrick, S.; Kidd, D.; Kleinstreuer, N.C.; Lima, B.S.; Settivari, R.S.; et al. An evaluation framework for new approach methodologies (NAMs) for human health safety assessment. Regul. Toxicol. Pharm. 2020, 112, 104592. [Google Scholar] [CrossRef]
- Strickland, J.; Daniel, A.B.; Allen, D.; Aguila, C.; Ahir, S.; Bancos, S.; Craig, E.; Germolec, D.; Ghosh, C.; Hudson, N.L.; et al. Skin sensitization testing needs and data uses by US regulatory and research agencies. Arch. Toxicol. 2019, 93, 273–291. [Google Scholar] [CrossRef]
- Dent, M.; Amaral, R.T.; Da Silva, P.A.; Ansell, J.; Boisleve, F.; Hatao, M.; Hirose, A.; Kasai, Y.; Kern, P.; Kreiling, R.; et al. Principles underpinning the use of new methodologies in the risk assessment of cosmetic ingredients. Comput. Toxicol. 2018, 7, 20–26. [Google Scholar] [CrossRef]
- Gilmour, N.; Kern, P.S.; Alepee, N.; Boisleve, F.; Bury, D.; Clouet, E.; Hirota, M.; Hoffmann, S.; Kuhnl, J.; Lalko, J.F.; et al. Development of a next generation risk assessment framework for the evaluation of skin sensitisation of cosmetic ingredients. Regul. Toxicol. Pharm. 2020, 116, 104721. [Google Scholar] [CrossRef]
- Kleinstreuer, N.C.; Hoffmann, S.; Alépée, N.; Allen, D.; Ashikaga, T.; Casey, W.; Clouet, E.; Cluzel, M.; Desprez, B.; Gellatly, N.; et al. Non-animal methods to predict skin sensitization (II): An assessment of defined approaches. Crit. Rev. Toxicol. 2018, 48, 359–374. [Google Scholar] [CrossRef]
- Na, M.; O’Brien, D.; Gerberick, G.F.; Kern, P.S.; Lavelle, M.; Lee, I.; Parakhia, R.; Ryan, C.; Api, A.M. Benchmarking performance of SENS-IS assay against weight of evidence skin sensitization potency categories. Regul. Toxicol. Pharm. 2022, 130, 105128. [Google Scholar] [CrossRef]
- Macmillan, D.S.; Chilton, M.L. A defined approach for predicting skin sensitisation hazard and potency based on the guided integration of in silico, in chemico and in vitro data using exclusion criteria. Regul. Toxicol. Pharm. 2019, 101, 35–47. [Google Scholar] [CrossRef]
- Patlewicz, G.; Dimitrov, S.D.; Low, L.K.; Kern, P.S.; Dimitrova, G.D.; Comber, M.I.; Aptula, A.O.; Phillips, R.D.; Niemelä, J.; Madsen, C.; et al. TIMES-SS--a promising tool for the assessment of skin sensitization hazard. A characterization with respect to the OECD validation principles for (Q)SARs and an external evaluation for predictivity. Regul. Toxicol. Pharm. 2007, 48, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Patlewicz, G.; Kuseva, C.; Mehmed, A.; Popova, Y.; Dimitrova, G.; Ellis, G.; Hunziker, R.; Kern, P.; Low, L.; Ringeissen, S.; et al. TIMES-SS--recent refinements resulting from an industrial skin sensitisation consortium. SAR QSAR Environ. Res. 2014, 25, 367–391. [Google Scholar] [CrossRef] [PubMed]
- Patlewicz, G.; Lizarraga, L.E.; Rua, D.; Allen, D.G.; Daniel, A.B.; Fitzpatrick, S.C.; Garcia-Reyero, N.; Gordon, J.; Hakkinen, P.; Howard, A.S.; et al. Exploring current read-across applications and needs among selected U.S. Federal Agencies. Regul. Toxicol. Pharm. 2019, 106, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Chilton, M.L.; Macmillan, D.S.; Steger-Hartmann, T.; Hillegass, J.; Bellion, P.; Vuorinen, A.; Etter, S.; Smith, B.P.C.; White, A.; Sterchele, P.; et al. Making reliable negative predictions of human skin sensitisation using an in silico fragmentation approach. Regul. Toxicol. Pharm. 2018, 95, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Enoch, S.J.; Madden, J.C.; Cronin, M.T. Identification of mechanisms of toxic action for skin sensitisation using a SMARTS pattern based approach. SAR QSAR Environ. Res. 2008, 19, 555–578. [Google Scholar] [CrossRef] [PubMed]
- Cottrez, F.; Boitel, E.; Ourlin, J.C.; Peiffer, J.L.; Fabre, I.; Henaoui, I.S.; Mari, B.; Vallauri, A.; Paquet, A.; Barbry, P.; et al. SENS-IS, a 3D reconstituted epidermis based model for quantifying chemical sensitization potency: Reproducibility and predictivity results from an inter-laboratory study. Toxicol. Vitro 2016, 32, 248–260. [Google Scholar] [CrossRef]
- Cottrez, F.; Boitel, E.; Auriault, C.; Aeby, P.; Groux, H. Genes specifically modulated in sensitized skins allow the detection of sensitizers in a reconstructed human skin model. Development of the SENS-IS assay. Toxicol. Vitro 2015, 29, 787–802. [Google Scholar] [CrossRef]
- Zeller, K.S.; Forreryd, A.; Lindberg, T.; Gradin, R.; Chawade, A.; Lindstedt, M. The GARD platform for potency assessment of skin sensitizing chemicals. ALTEX 2017, 34, 539–559. [Google Scholar] [CrossRef] [Green Version]
- Masinja, W.; Elliott, C.; Modi, S.; Enoch, S.J.; Cronin, M.T.D.; McInnes, E.F.; Currie, R.A. Comparison of the predictive nature of the Genomic Allergen Rapid Detection (GARD) assay with mammalian assays in determining the skin sensitisation potential of agrochemical active ingredients. Toxicol. Vitro 2021, 70, 105017. [Google Scholar] [CrossRef]
- Wareing, B.; Urbisch, D.; Kolle, S.N.; Honarvar, N.; Sauer, U.G.; Mehling, A.; Landsiedel, R. Prediction of skin sensitization potency sub-categories using peptide reactivity data. Toxicol. Vitro 2017, 45, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, J.S.; Natsch, A.; Ryan, C.; Strickland, J.; Ashikaga, T.; Miyazawa, M. Bayesian integrated testing strategy (ITS) for skin sensitization potency assessment: A decision support system for quantitative weight of evidence and adaptive testing strategy. Arch. Toxicol. 2015, 89, 2355–2383. [Google Scholar] [CrossRef] [PubMed]
- Natsch, A.; Emter, R.; Gfeller, H.; Haupt, T.; Ellis, G. Predicting Skin Sensitizer Potency Based on In Vitro Data from KeratinoSens and Kinetic Peptide Binding: Global Versus Domain-Based Assessment. Toxicol. Sci. 2015, 143, 319–332. [Google Scholar] [CrossRef] [Green Version]
- Hirota, M.; Fukui, S.; Okamoto, K.; Kurotani, S.; Imai, N.; Fujishiro, M.; Kyotani, D.; Kato, Y.; Kasahara, T.; Fujita, M.; et al. Evaluation of combinations of in vitro sensitization test descriptors for the artificial neural network-based risk assessment model of skin sensitization. J. Appl. Toxicol. 2015, 35, 1333–1347. [Google Scholar] [CrossRef]
- Hirota, M.; Ashikaga, T.; Kouzuki, H. Development of an artificial neural network model for risk assessment of skin sensitization using human cell line activation test, direct peptide reactivity assay, KeratinoSens and in silico structure alert parameter. J. Appl. Toxicol. 2018, 38, 514–526. [Google Scholar] [CrossRef] [PubMed]
- Takenouchi, O.; Fukui, S.; Okamoto, K.; Kurotani, S.; Imai, N.; Fujishiro, M.; Kyotani, D.; Kato, Y.; Kasahara, T.; Fujita, M.; et al. Test battery with the human cell line activation test, direct peptide reactivity assay and DEREK based on a 139 chemical data set for predicting skin sensitizing potential and potency of chemicals. J. Appl. Toxicol. 2015, 35, 1318–1332. [Google Scholar] [CrossRef]
- OECD. Guideline No. 497: Defined Approaches on Skin Sensitisation. OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Bauch, C.; Kolle, S.N.; Ramirez, T.; Eltze, T.; Fabian, E.; Mehling, A.; Teubner, W.; van Ravenzwaay, B.; Landsiedel, R. Putting the parts together: Combining in vitro methods to test for skin sensitizing potentials. Regul. Toxicol. Pharm. 2012, 63, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Urbisch, D.; Mehling, A.; Guth, K.; Ramirez, T.; Honarvar, N.; Kolle, S.; Landsiedel, R.; Jaworska, J.; Kern, P.S.; Gerberick, F.; et al. Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul. Toxicol. Pharm. 2015, 71, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Natsch, A.; Landsiedel, R.; Kolle, S.N. A triangular approach for the validation of new approach methods for skin sensitization. ALTEX 2021, 38, 669–677. [Google Scholar] [CrossRef]
- OECD. Test Guideline No. 442C: In Chemico Skin Sensitisation Assays addressing the Adverse Outcome Pathway, key event on covalent binding to proteins. In OECD Guidelines for the Testing of Chemicals, Section 4; OECD: Paris, France, 2021. [Google Scholar] [CrossRef]
- Natsch, A.; Haupt, T.; Wareing, B.; Landsiedel, R.; Kolle, S.N. Predictivity of the kinetic direct peptide reactivity assay (kDPRA) for sensitizer potency assessment and GHS subclassification. ALTEX 2020, 37, 652–664. [Google Scholar] [CrossRef]
- Wareing, B.; Kolle, S.N.; Birk, B.; Alepee, N.; Haupt, T.; Kathawala, R.; Kern, P.S.; Nardelli, L.; Raabe, H.; Rucki, M.; et al. The kinetic direct peptide reactivity assay (kDPRA): Intra- and inter-laboratory reproducibility in a seven-laboratory ring trial. ALTEX 2020, 37, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Natsch, A.; Emter, R.; Haupt, T.; Ellis, G. Deriving a No Expected Sensitization Induction Level for Fragrance Ingredients Without Animal Testing: An Integrated Approach Applied to Specific Case Studies. Toxicol. Sci. 2018, 165, 170–185. [Google Scholar] [CrossRef] [PubMed]
- OECD. Series on Testing and Assessment No. 336: Supporting Document to the Guideline (GL) on Defined Approaches (DAs) for Skin Sensitisation-Annex 2; Organisation for Economic Cooperation and Development: Paris, France, 2021; Available online: https://www.oecd.org/chemicalsafety/testing/series-testing-assessment-publications-number.htm (accessed on 23 August 2021).
- Zang, Q.; Paris, M.; Lehmann, D.M.; Bell, S.; Kleinstreuer, N.; Allen, D.; Matheson, J.; Jacobs, A.; Casey, W.; Strickland, J. Prediction of skin sensitization potency using machine learning approaches. J. Appl. Toxicol. 2017, 37, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Loveless, S.E.; Api, A.M.; Crevel, R.W.; Debruyne, E.; Gamer, A.; Jowsey, I.R.; Kern, P.; Kimber, I.; Lea, L.; Lloyd, P.; et al. Potency values from the local lymph node assay: Application to classification, labelling and risk assessment. Regul. Toxicol. Pharm. 2010, 56, 54–66. [Google Scholar] [CrossRef]
- OECD. Test No. 429: Skin Sensitisation; OECD: Paris, France, 2010. [Google Scholar]
- Reynolds, G.; Reynolds, J.; Gilmour, N.; Cubberley, R.; Spriggs, S.; Aptula, A.; Przybylak, K.; Windebank, S.; Maxwell, G.; Baltazar, M.T. A hypothetical skin sensitisation next generation risk assessment for coumarin in cosmetic products. Regul. Toxicol. Pharm. 2021, 127, 105075. [Google Scholar] [CrossRef]
- Reynolds, J.; MacKay, C.; Gilmour, N.; Miguel-Vilumbrales, D.; Maxwell, G. Probabilistic prediction of human skin sensitiser potency for use in next generation risk assessment. Comput. Toxicol. 2019, 9, 36–49. [Google Scholar] [CrossRef]
- Basketter, D.; Kimber, I. Consideration of criteria required for assignment of a (skin) sensitiser a substance of very high concern (SVHC) under the REACH regulation. Regul. Toxicol. Pharm. 2014, 69, 524–528. [Google Scholar] [CrossRef]
- Api, A.M.; Parakhia, R.; O’Brien, D.; Basketter, D.A. Fragrances Categorized According to Relative Human Skin Sensitization Potency. Dermatitis 2017, 28, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Na, M.; O’Brien, D.; Lavelle, M.; Lee, I.; Gerberick, G.F.; Api, A.M. Weight of Evidence Approach for Skin Sensitization Potency Categorization of Fragrance Ingredients. Dermatitis 2022, 33, 161–175. [Google Scholar] [CrossRef]
- Casati, S.; Aeby, P.; Kimber, I.; Maxwell, G.; Ovigne, J.M.; Roggen, E.; Rovida, C.; Tosti, L.; Basketter, D. Selection of chemicals for the development and evaluation of in vitro methods for skin sensitisation testing. Altern. Lab. Anim. 2009, 37, 305–312. [Google Scholar] [CrossRef]
- Hoffmann, S.; Kleinstreuer, N.; Alépée, N.; Allen, D.; Api, A.M.; Ashikaga, T.; Clouet, E.; Cluzel, M.; Desprez, B.; Gellatly, N.; et al. Non-animal methods to predict skin sensitization (I): The Cosmetics Europe database. Crit. Rev. Toxicol. 2018, 48, 344–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolle, S.N.; Hill, E.; Raabe, H.; Landsiedel, R.; Curren, R. Regarding the references for reference chemicals of alternative methods. Toxicol. Vitro 2019, 57, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Natsch, A.; Ryan, C.A.; Foertsch, L.; Emter, R.; Jaworska, J.; Gerberick, F.; Kern, P. A dataset on 145 chemicals tested in alternative assays for skin sensitization undergoing prevalidation. J. Appl. Toxicol 2013, 33, 1337–1352. [Google Scholar] [CrossRef] [PubMed]
Test Method or Defined Approach | OECD Test Guideline [31,32,33,34] | AOP Key Event [30] | Prediction Model Outcome |
---|---|---|---|
DPRA | 442C, 2021 | Key Event 1, peptide/protein binding | Positive/Negative on KE1 |
ADPRA | 442C, 2021 | Key Event 1, peptide/protein binding | Positive/Negative on KE1 |
kDPRA | 442C, 2021 | Key Event 1, peptide/protein binding | Positive/Negative on KE1 and quantitative information for Cat 1A or Cat 1B/NS |
KeratinoSens™ | 442D, 2018 | Key Event 2, keratinocyte response | Positive/Negative on KE2 |
LuSens | 442D, 2018 | Key Event 2, keratinocyte response | Positive/Negative on KE2 |
h-CLAT | 442E, 2018 | Key Event 3, Monocyte/dendritic cell response | Positive/Negative on KE3 |
U-SENS™ | 442E, 2018 | Key Event 3, Monocyte/dendritic cell response | Positive/Negative on KE3 |
IL-8 Luc | 442E, 2018 | Key Event 3, Monocyte/dendritic cell response | Positive/Negative on KE3 |
2 out of 3 DA | 497, 2021 | Combining Key Events 1, 2 and 3 | Positive/Negative for sensitizer |
ITS v1 and v2 DA | 497, 2021 | Combining Key Events 1 and 3 | Positive/Negative for sensitizer and information for Cat 1A or Cat 1B/NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basketter, D.A.; Gerberick, G.F. Skin Sensitization Testing: The Ascendancy of Non-Animal Methods. Cosmetics 2022, 9, 38. https://doi.org/10.3390/cosmetics9020038
Basketter DA, Gerberick GF. Skin Sensitization Testing: The Ascendancy of Non-Animal Methods. Cosmetics. 2022; 9(2):38. https://doi.org/10.3390/cosmetics9020038
Chicago/Turabian StyleBasketter, David A., and George F. Gerberick. 2022. "Skin Sensitization Testing: The Ascendancy of Non-Animal Methods" Cosmetics 9, no. 2: 38. https://doi.org/10.3390/cosmetics9020038
APA StyleBasketter, D. A., & Gerberick, G. F. (2022). Skin Sensitization Testing: The Ascendancy of Non-Animal Methods. Cosmetics, 9(2), 38. https://doi.org/10.3390/cosmetics9020038