Flexabrasion Applied to the Evaluation of the Photodegradation of Hair Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hair Sample Preparation
2.2. Solar Exposure Simulation
2.3. Flexabrasion Test Method
3. Results and Discussion
3.1. Flexabrasion Test Results
3.2. Estimate of the Equivalent Dose of Solar Radiation
4. Conclusions
- Use of brown coloration natural strands;
- Total radiation dose of 329.12 for the wavelength range of 300 nm to 3000 nm of the solar spectrum, or the equivalent for the assessment of different wavelength windows;
- Temperature of 40 °C;
- Relative humidity of 50%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Dario, M.F.; Baby, A.R.; Velasco, M.V.R. Effects of solar radiation on hair and photoprotection. J. Photochem. Photobiol. B Biol. 2015, 153, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Bedell, A. Ultraviolet damage on natural gray hair and its photoprotection. J. Cosmet. Sci. 2001, 52, 103–118. [Google Scholar] [PubMed]
- Nogueira, A.C.S.; Joekes, I. Hair color changes and protein damage caused by ultraviolet radiation. J. Photochem. Photobiol. B Biol. 2004, 74, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Tanji, N.; Inoue, S.; Okamoto, M.; Tokunaga, S.; Tanamachi, H. ToF-SIMS characterization of the lipid layer on the hair surface. I: The damage caused by chemical treatments and UV radiation. Surf. Interface Anal. 2011, 43, 410–412. Available online: https://analyticalsciencejournals.onlinelibrary.wiley.co (accessed on 4 November 2021).
- Richena, M.; Rezende, C.A. Effect of photodamage on the outermost cuticle layer of human hair. J. Photochem. Photobiol. B Biol. 2015, 153, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, A.C.S.; Dicelio, I.; Joekes, I. About photo-damage of human hair. Photochem. Photobiol. Sci. 2006, 5, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Hoting, E.; Zimmermann, M. Sunlight-induced modifications in bleached, permed, or dyed human hair. J. Soc. Cosmet. Chem. 1997, 48, 79–91. [Google Scholar]
- Robbins, C. Chemical and Physical Behavior of Human Hair, 5th ed.; Springer: New York, NY, USA, 2012. [Google Scholar]
- Lee, W.S. Hair Photoaging. In Aging Hair; Trüeb, R., Tobin, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 123–133. [Google Scholar]
- Bouillon, C.; Wilkinson, J.C. The Science of Hair Care, 2nd ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2005. [Google Scholar]
- Swift, J.A.; Chahal, S.P.; Coulson, D.L.; Challoner, N.I. Flexabrasion: A Method for Evaluating Hair Strength. Cosmet. Toilet. Sci. Appl. 2014, 129, 5. Available online: https://www.cosmeticsandtoiletries.com/testing/methoddevelopment/From-the-Archives--Flexabrasion-A-Method-for-Evaluating-Hair-Strengthpremium-259971381.html (accessed on 12 March 2020).
- da Gama, R.M.; Baby, A.R.; Velasco, M.V.R. In Vitro Methodologies to Evaluate the Effects of Hair Care Products on Hair Fiber. Cosmetics 2017, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Kuzuhara, A. Analysis of internal structure changes in black human hair keratin fibers resulting from bleaching treatments using Raman spectroscopy. J. Mol. Struct. 2013, 1047, 186–193. [Google Scholar] [CrossRef]
- Cloete, E.; Khumalo, N.P.; Ngoepe, M.N. The what, why and how of curly hair: A review. Proc. R. Soc. A 2019, 475, 0516. [Google Scholar] [CrossRef]
- Fedorkova, M.V.; Brandt, N.N.; Chikishev, A.Y.; Smolina, N.V.; Balabushevich, N.G.; Gusev, S.A.; Lipatova, V.A.; Botchey, V.M.; Dobretsov, G.E.; Mikhalchik, E.V. Photoinduced formation of thiols in human hair. J. Photochem. Photobiol. B Biol. 2016, 164, 43–48. [Google Scholar] [CrossRef]
- Maeda, K.; Yamazaki, J.; Okita, N.; Shimotori, M.; Igarashi, K.; Sano, T. Mechanism of Cuticle Hole Development in Human Hair Due to UV-Radiation Exposure. Cosmetics 2018, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Morton, W.E.; Hearle, J.W.S. Physical Properties of Textile Fibres, 4th ed.; Woodhead Publishing limited: Cambridge, UK, 2008. [Google Scholar]
- Leroy, F.; Franbourg, A.; Grognet, J.C.; Vayssie, C.; Bauer, D. Flexabrasion: A new test for predicting human hair resistance. In Proceedings of the First Tricontinental Meeting on Hair Research Society, Brussels, Belgium, 8–10 October 1995. [Google Scholar]
- Bertrand, L.; Doucet, J.; Simionovici, A.; Tsoucaris, G.; Walter, P. Lead-revealed lipid organization in human hair. Biochim. Biophys. Acta 2003, 1620, 218–224. [Google Scholar] [CrossRef]
- Swift, J.A.; Coulson, D.; al Bayatti, M.F. The intra-fibre flexabrasion test. A powerful method in the evaluation of hair toiletry products. In Proceedings of The 10th International Wool Textile Research Conference, Aachen, Germany, 26 November–1 December 2000. [Google Scholar]
- de la Mettrie, R.; Saint-Léger, D.; Loussouarn, G.; Garcel, A.; Porter, C.; Langaney, A. Shape variability and classification of human hair: A worldwide approach. Hum. Biol. 2007, 79, 265–281. [Google Scholar] [CrossRef]
- Atlas Material Testing Technology. Ci3000+/Ci4000/Ci5000 Weather-Ometer®: General Equipment Specifications Manual Ci3000 Atlas; 2014. [Google Scholar]
- ASTM G173-03:2012; Standard Tables for Reference Solar Spectral Irradiance: Direct Normal and Hemisferical on 37° Tilted Surface; ASTM International: West Conshohocken, PA, USA, 2012. [CrossRef]
- Campos, C.V.C.; de Oliveira, E.C.; Barbosa, C.R.H. Methodology for evaluation of methods for volume correction of liquid oil derivatives. Measurement 2020, 153, 107388. [Google Scholar] [CrossRef]
- de Holleben, C.; de Oliveira, E.C. Variations in the classification of laboratory performance due to different protocols for use in proficiency testing programs. Measurement 2020, 152, 107354. [Google Scholar] [CrossRef]
- Bloch, L.D.; Goshiyama, A.M.; Dario, M.F.; Escudeiro, C.C.; Sarruf, F.D.; Velasco, M.V.R.; Valente, N.Y.S. Chemical and physical treatments damage Caucasian and Afro-ethnic hair fibre: Analytical and image assays. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 2158–2167. [Google Scholar] [CrossRef]
- Brown, M.A.; Hutchins, T.A.; Gamsky, C.J.; Wagner, M.S.; Page, S.H.; Marsh, J.M. Liquid crystal colloidal structures for increased silicone deposition efficiency on colour-treated hair. Int. J. Cosmet. Sci. 2010, 32, 193–203. [Google Scholar] [CrossRef]
- Robbins, C.; Weigmann, H.-D.; Ruetsch, S.; Kamath, Y. Failure of intercellular adhesion in hair fibers with regard to hair condition and strain conditions. J. Cosmet. Sci. 2004, 55, 351–371. [Google Scholar] [CrossRef]
- Mcmullen, R.L.; Gillece, T.; Laura, D.; Zhang, G.; Thompson, W.; Wossene, S. Investigation of Physicochemical Changes in Hair as a Result of Treatment with Formaldehyde and Thermal Styling Devices. In Proceedings of the TRI’s International Conference on Applied Hair Science, Princeton, NJ, USA, 18–19 September 2014. [Google Scholar]
- Fernandez, E.; Barba, C.; Alonso, C.; Marti, M.; Parra, J.L.; Coderch, L. Photodamage determination of human hair. J. Photochem. Photobiol. B 2012, 106, 101–106. [Google Scholar] [CrossRef]
- Sandhu, S.S.; Robbins, C.R. A simple and sensitive technique, based on protein loss measurements, to assess surface damage to human hair. J. Soc. Cosmet. Chem. 1993, 44, 163–175. [Google Scholar]
Reference | Exposure Methodology | Measurement Strategy | Conclusion |
---|---|---|---|
[2] 2001 | Hair swatches subjected to an ultraviolet lamp for 360 h. | Mechanical (tensile strength test method) | Elastic modulus and breaking stress of the fiber were significantly changed after exposure. |
[3] 2004 | Hair swatches exposed to a mercury vapor lamp for 448 h. | Mechanical (tensile strength test method) | There were no alterations to the hair fiber’s elastic modulus and breaking stress. |
[4] 2011 | Hair swatches exposed to a solar simulator for 480 h. | Chemical (18-MEA layer evaluation) | The 18-MEA layer was removed by irradiation. |
[5] 2015 | Hair swatches exposed to a mercury vapor lamp for 600 h. | Chemical (18-MEA layer evaluation) | The 18-MEA layer was not altered or removed by irradiation. |
Group | Protocol of Application of the Chemical Procedure |
---|---|
Natural hair (NA) | The swatches of this group were not subjected to any procedure of chemical transformation. |
Bleached hair (BL) | The swatches of this group were subjected to 2 applications of bleach using a bleach mixture containing 12% hydrogen peroxide, with 45 min of pause time. |
Dyed hair (DY) | The swatches of this group were subjected to 1 application of a hair coloring mixture containing 9% hydrogen peroxide, with 35 min of pause time. |
Straightened hair (ST) | The swatches of this group were subjected to 1 application of a straightening product containing 8.5% formaldehyde. Here, 30 min of pause time was followed by brushing (using a hairdryer) and flat ironing. |
Exposure Time | Number of Cycles before Hair Fiber Breakage | |||||||
---|---|---|---|---|---|---|---|---|
Median | Expanded Uncertainty | |||||||
NA | BL | DY | ST | NA | BL | DY | ST | |
0 h | 434.00 | 273.50 | 304.50 | 33.00 | 42.36 | 46.06 | 57.73 | 5.75 |
10 h | 426.50 | 255.50 | 312.50 | 18.50 | 69.45 | 41.34 | 55.89 | 12.19 |
30 h | 397.00 | 247.50 | 280.50 | 22.00 | 66.51 | 56.41 | 95.73 | 7.93 |
60 h | 389.50 | 213.50 | 287.50 | 17.00 | 72.66 | 59.04 | 77.71 | 6.35 |
90 h | 288.50 | 210.50 | 282.50 | 26.50 | 34.63 | 45.60 | 50.58 | 8.65 |
120 h | 338.50 | 240.00 | 254.50 | 34.00 | 53.20 | 76.40 | 70.70 | 9.43 |
150 h | 254.00 | 187.00 | 250.50 | 17.00 | 72.66 | 45.34 | 67.29 | 6.75 |
Mann-Whitney Test—Comparison with 0 h of Exposure Time | ||||||
---|---|---|---|---|---|---|
Samples | 10 h | 30 h | 60 h | 90 h | 120 h | 150 h |
NA | = | = | ≠ | ≠ | ≠ | ≠ |
BL | = | = | ≠ | = | = | ≠ |
DY | = | = | = | = | ≠ | ≠ |
ST | = | ≠ | ≠ | = | = | ≠ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, N.F.; Rakshit, R.; Galliano, A.; Mercurio, D.G.; de Oliveira, E.C.; Monteiro, E.C. Flexabrasion Applied to the Evaluation of the Photodegradation of Hair Fibers. Cosmetics 2022, 9, 1. https://doi.org/10.3390/cosmetics9010001
de Oliveira NF, Rakshit R, Galliano A, Mercurio DG, de Oliveira EC, Monteiro EC. Flexabrasion Applied to the Evaluation of the Photodegradation of Hair Fibers. Cosmetics. 2022; 9(1):1. https://doi.org/10.3390/cosmetics9010001
Chicago/Turabian Stylede Oliveira, Nathália F., Rima Rakshit, Anthony Galliano, Daiane Garcia Mercurio, Elcio Cruz de Oliveira, and Elisabeth Costa Monteiro. 2022. "Flexabrasion Applied to the Evaluation of the Photodegradation of Hair Fibers" Cosmetics 9, no. 1: 1. https://doi.org/10.3390/cosmetics9010001
APA Stylede Oliveira, N. F., Rakshit, R., Galliano, A., Mercurio, D. G., de Oliveira, E. C., & Monteiro, E. C. (2022). Flexabrasion Applied to the Evaluation of the Photodegradation of Hair Fibers. Cosmetics, 9(1), 1. https://doi.org/10.3390/cosmetics9010001