The Use of Catalytic Amounts of Selected Cationic Surfactants in the Design of New Synergistic Preservative Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Challenge Test
2.2. Minimum Inhibitory Concentration (MIC)
3. Results and Discussion
3.1. The Antimicrobial Activity of Cationic Surfactants
3.2. Cationic Surfactants as Antimicrobial Catalysts
3.3. Maltol/QAS Nature-Based Preservatives
3.4. Challenge Tests
3.5. Synergistic Effect
4. Tentative Mode of Action and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donaldson, B.R.; Messenger, E.T. Performance characteristics and solution properties of surfactants in shampoos. Int. J. Cosmet. Sci. 1979, 1, 71–90. [Google Scholar] [CrossRef] [PubMed]
- Arif, S. The formulation basics for personal cleansers. HAPPI 2009, 46, 73–75. [Google Scholar]
- Cornwell, P.A. A review of shampoo surfactant technology: Consumer benefits, raw materials and recent developments. Int. J. Cosmet. Sci. 2018, 40, 16–30. [Google Scholar] [CrossRef]
- Reich, C. Surfactants in Cosmetics, Surfactant Science Series; Rieger, M.M., Rhein, L.D., Eds.; Marcel Dekker: New York, NY, USA, 1997; Volume 68, Chapter 16; p. 357. [Google Scholar]
- Forster, T.; Schwuger, M.J. Correlation Between Adsorption and the Effects of Surfactants and Polymers on Hair. Prog. Colloid Polym. Sci. 1990, 83, 104–109. [Google Scholar]
- Rhein, L. Handbook for Cleaning/Decontamination of Surfaces; Johansson, I., Somasundaran, P., Eds.; Elsevier B.V.: Alpharetta, GA, USA, 2007; Volume 1, Chapter 3; p. 305. [Google Scholar]
- Zhou, C.; Wang, Y. Structure-Activity Relationship of Cationic Surfactants as Antimicrobial Agents. Curr. Opin. Colloid Interface Sci. 2020, 45, 28–43. [Google Scholar] [CrossRef]
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [Green Version]
- Aiad, I.L.; Badawi, A.M.; El-Sukkary, M.M.; El-Sawy, A.A.; Adawy, A.I. Synthesis and Biocidal Activity of Some Naphthalene-Based Cationic Surfactants. J. Surfact. Deterg. 2012, 15, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Hoque, J.; Akkapeddi, P.; Yarlagadda, V.; Uppu, D.S.; Kumar, P.; Haldar, J. Cleavable cationic antibacterial amphiphiles: Synthesis, mechanism of action, and cytotoxicities. Langmuir 2012, 28, 12225–12234. [Google Scholar] [CrossRef] [PubMed]
- Hoque, J.; Konai, M.M.; Samaddar, S.; Gonuguntala, S.; Manjunath, G.B.; Ghosh, C.; Haldar, J. Selective and broad spectrum amphiphilic small molecules to combat bacterial resistance and eradicate biofilms. Chem. Commun. 2015, 51, 13670–13673. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Lerma, F.; Maull, E.; Terradas, R.; Sequra, C.; Planells, I.; Coll, P.; Knobel, H.; Vázquez, A. Moisturizing body milk as a reservoir of Burkholderia cepacia: Outbreak of nosocomial infection in a multidisciplinary intensive care unit. Crit. Care 2008, 12, R10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundov, M.D.; Johansen, J.D.; Zachariae, C.; Moesby, L. Low-level efficacy of cosmetic preservatives. Int. J. Cosmet. Sci. 2011, 33, 190–196. [Google Scholar] [CrossRef]
- Inácio, A.S.; Domingues, N.S.; Nunes, A.; Martins, P.T.; Moreno, M.J.; Estronca, L.M.; Fernandes, R.; Moreno, A.J.M.; Borrego, M.J.; Gomes, J.P.; et al. Quaternary ammonium surfactant structure determines selective toxicity towards bacteria: Mechanisms of action and clinical implications in antibacterial prophylaxis. J. Antimicrob. Chemother. 2016, 71, 641–654. [Google Scholar] [CrossRef] [Green Version]
- Walker, E.B. Handbook of Topical Antimicrobials: Industrial Applications in Consumer Products and Pharmaceuticals; Paulson, D., Ed.; Marcel Dekker: New York, NY, USA, 2003; Chapter 5; p. 99. [Google Scholar]
- Gilbert, P.; Moore, L.E. Cationic antiseptics: Diversity of action under a common epithet. J. Appl. Microbiol. 2005, 99, 703–715. [Google Scholar] [CrossRef]
- Buffet-Bataillon, S.; Tattevin, P.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Emergence of resistance to antibacterial agents: The role of quaternary ammonium compounds—A critical review. Int. J. Antimicrob. Agents 2012, 39, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Colomer, A.; Pinazo, A.; Manresa, M.A.; Vinardell, M.P.; Mitjans, M.; Infante, M.R.; Pérez, L. Cationic surfactants derived from lysine: Effects of their structure and charge type on antimicrobial and hemolytic activities. J. Med. Chem. 2011, 54, 989–1002. [Google Scholar] [CrossRef]
- Manaargadoo-Catin, M.; Ali-Cherif, A.; Pougnas, J.-L.; Perrin, C. Hemolysis by surfactants—A review. Adv. Colloid Interface Sci. 2016, 228, 1–16. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, S.; Yu, J.; Chen, X.; Lei, Q.; Fang, W. Antibacterial activity, in vitro cytotoxicity and cell cycle arrest of gemini quaternary ammonium surfactants. Langmuir 2015, 31, 12161–12169. [Google Scholar] [CrossRef] [PubMed]
- Lukáč, M.; Mojžiš, J.; Mojžišová, G.; Mrva, M.; Ondriska, F.; Valentová, J.; Lacko, I.; Bukovský, M.; Devínsky, F.; Karlovská, J. Dialkylamino and nitrogen heterocyclic analogues of hexadecylphosphocholine and cetyltrimetylammonium bromide: Effect of phosphate group and environment of the ammonium cation on their biological activity. Eur. J. Med. Chem. 2009, 44, 4970–4977. [Google Scholar] [CrossRef]
- Jennings, M.C.; Minbiole, K.P.; Wuest, W.M. Quaternary ammonium compounds: An antimicrobial mainstay and platform for innovation to address bacterial resistance. ACS Infect. Dis. 2015, 1, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wang, F.; Chen, H.; Li, M.; Qiao, F.; Liu, Z.; Hou, Y.; Wu, C.; Fan, Y.; Liu, L.; et al. Selective antimicrobial activities and action mechanism of micelles self-assembled by cationic oligomeric surfactants. ACS Appl. Mater. Interfaces 2016, 8, 4242–4249. [Google Scholar] [CrossRef]
- Ghosh, C.; Manjunath, G.B.; Akkapeddi, P.; Yarlagadda, V.; Hoque, J.; Uppu, D.S.; Konai, M.M.; Haldar, J. Small molecular antibacterial peptoid mimics: The simpler, the better! J. Med. Chem. 2014, 57, 1428–1436. [Google Scholar] [CrossRef]
- Davidson, M.P.; Critzer, F.J.; Taylor, T.M. Naturally Occurring Antimicrobials for Minimally Processed Foods. Annu. Rev. Food Sci. Technol. 2013, 4, 163–190. [Google Scholar] [CrossRef]
- Yadav, A.N.; Kour, D.; Rana, K.L.; Yadav, N.; Singh, B.; Chauhan, V.S.; Rastegari, A.A.; Hesham, A.E.-L.; Gupta, V.K. New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Secondary Metabolites Biochemistry and Applications; Gupta, V.K., Pandey, A., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2019; Chapter 20; p. 279. [Google Scholar] [CrossRef]
- Lobato, C.C.; Ordoñez, M.E.; Queiroz, R.L.; Santos, C.B.R.; Borges, R.S. A comparative study between kojic acid and its methylated derivatives as antioxidant related to maltol and alomaltol. Chem. Data Collect. 2020, 28, 100464. [Google Scholar] [CrossRef]
- Hall, R.L.; Oser, B.L. Recent progress in the consideration of flavoring ingredients under the Food Additives Amendment: III. GRAS Substances. Food Technol. 1965, 19, 151–197. [Google Scholar]
- Ziklo, N.; Tzafrir, I.; Shulkin, R.; Salama, P. Salicylate UV-Filters in Sunscreen Formulations Compromise the Preservative System Efficacy against Pseudomonas aeruginosa and Burkholderia cepacian. Cosmetics 2020, 7, 63. [Google Scholar] [CrossRef]
- Jansen, A.C.; Boucher, C.E.; Coetsee, E.; Kock, J.L.F.; van Wyk, P.W.J.; Swart, H.C.; Bragg, R.R. The influence of Didecyldimethylammonium Chloride on the morphology and elemental composition of Staphylococcus aureus as determined by NanoSAM. SRE 2013, 8, 152–160. [Google Scholar] [CrossRef]
- Yoshimatsw, T.; Hiyama, K. Mechanism of the Action of Didecyldimethylammonium chloride (DDAC) against Escherichia coli and Morphological Changes of the Cells. Biocontrol Sci. 2007, 12, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langsrud, S.; Steinhauer, K.; Lüthje, S.; Weber, K.; Goroncy-Bermes, P.; Holck, A.L. Ethylhexylglycerin Impairs Membrane Integrity and Enhances the Lethal Effect of Phenoxyethanol. PLoS ONE 2016, 11, e0165228. [Google Scholar] [CrossRef] [Green Version]
- Bendini, A.; Cerretani, L.; Pizzolante, L.; Toschi, T.G.; Guzzo, F.; Ceoldo, S.; Marconi, A.M.; Andreetta, F.; Levi, M. Phenol content related to antioxidant and antimicrobial activities of Passiflora spp. Extracts. Eur. Food Res. Technol. 2006, 223, 102–109. [Google Scholar] [CrossRef]
- Zborowskia, K.; Grybosa, R.; Proniewicz, L.M. Vibrational and computational study on maltol (3-hydroxy-2-methyl-4h-pyran-4-one) polymorphism. Vib. Spectrosc. 2005, 37, 233–236. [Google Scholar] [CrossRef]
- Russell, A.D. Challenge testing: Principles and practice. Int. J. Cosmet. Sci. 2003, 25, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Connolly, P.; Bloomfield, S.F.; Denyerl, S.P. The use of impedance for preservative efficacy testing of pharmaceuticals and cosmetic products. J. Appl. Bacteriol. 1994, 76, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Joung, D.-K.; Choi, S.-H.; Kang, O.-H.; Kim, S.-B.; Mun, S.-H.; Seo, Y.-S.; Kang, D.-H.; Gong, R.; Shin, D.-W.; Kim, Y.-C.; et al. Synergistic effects of oxyresveratrol in conjunction with antibiotics against methicillin-resistant Staphylococcus aureus. Mol. Med. Rep. 2015, 12, 663–667. [Google Scholar] [CrossRef]
- Wind, C.M.; de Vries, H.J.C.; van Dam, A.P. Determination of in vitro synergy for dual antimicrobial therapy against resistant Neisseria gonorrhoeae using Etest and agar dilution. Int. J. Antimicrob. Agents 2015, 45, 305–308. [Google Scholar] [CrossRef] [Green Version]
Preservative | E. coli | S. aureus | P. aeruginosa | C. albicans | A. brasiliensis |
---|---|---|---|---|---|
Didecyldimethylammonium chloride (DDAC) | 2 | 0.5 | 15 | 3 | 7 |
Dodecyltrimethylammonium chloride | 45 | 20 | 360 | 45 | 360 |
Benzyldimethyldodecylammonium chloride | 45 | 15 | 120 | 20 | <60 |
1-Dodecyltriphenylphophonium bromide | <200 | <200 | <200 | <200 | <200 |
Polyquaternium-2 | 15 | 7.5 | 60 | 45 | 2000 |
Polyquaternium-52 | >2000 | >2000 | >2000 | 900 | >3000 |
Polyquaternium-55 | >600 | >600 | >600 | >1200 | >1200 |
Polyquaternium-80 | 360 | 120 | >600 | 240 | 120 |
Preservative | E. coli | S. aureus | P. aeruginosa | C. albicans | A. brasiliensis |
---|---|---|---|---|---|
14% Ethylhexylglycerin 86% Phenoxyethanol | 4000 | 4000 | 4000 | 4000 | 3000 |
14% Ethylhexylglycerin 81% Phenoxyethanol 5% Benzyldimethyldodecylammonium chloride | 400 | 100 | 800 | 100 | 100 |
14% Ethylhexylglycerin 81% Phenoxyethanol 5% Didecyldimethylammonium chloride | 100 | 200 | 200 | 100 | 100 |
Preservative | E. coli | S. aureus | P. aeruginosa | C. albicans | A. brasiliensis |
---|---|---|---|---|---|
85% Phenoxyethanol, 10% Chlorphenesin, 5% Caprylyl Glycol mixture | >1000 | >1000 | >1000 | >1000 | >1000 |
80% Phenoxyethanol, 10% Chlorphenesin, 5% Caprylyl Glycol mixture and 5% DDAC | 62 | 4 | 250 | 62 | 125 |
Preservative | E. coli | S. aureus | P. aeruginosa | C. albicans | A. brasiliensis |
---|---|---|---|---|---|
57% Water, 29% Sodium Benzoate, 14% Potassium Sorbate | 7000 | 4000 | 13,000 | 4000 | 2500 |
54.5% Water, 29% Sodium Benzoate, 14% Potassium Sorbate and 2.5% DDAC | 100 | 50 | 300 | 75 | 150 |
Preservative | E. coli | S. aureus | P. aeruginosa | C. albicans | A. brasiliensis |
---|---|---|---|---|---|
40% 2-Methyl-1,3-propanediol, 25% Caprylyl Glycol, 35% Water | 5000 | 5000 | 10,000 | 20,000 | 5000 |
40% 2-Methyl-1,3-propanediol, 25% Caprylyl Glycol, 22.5% Water, 10% Polyquaternium-80 and 2.5% DDAC | 1600 | 200 | 2000 | 800 | 200 |
Cosmetic Product Preservative Level of Use 0.5% | Time of Reading (days) | E. coli (cfu/mL) | S. aureus (cfu/mL) | P. aeruginosa (cfu/mL) | C. albicans (cfu/mL) | A. brasiliensis (cfu/mL) |
---|---|---|---|---|---|---|
Shampoo—Anionic | Inoculum | 1.1 × 106 | 1 × 106 | 1.1 × 106 | 1 × 105 | 1.1 × 105 |
2 | 2 × 105 | 8.5 × 102 | <10 | 1 × 105 | 1.1 × 103 | |
7 | 2 × 105 | <10 | <10 | 1.8 × 103 | 1.2 × 103 | |
14 | 2 × 105 | <10 | <10 | 2.5 × 102 | 1 × 103 | |
21 | 2 × 105 | <10 | <10 | <10 | 8.5 × 102 | |
28 | 2.6 × 105 | <10 | <10 | <10 | 6.6 × 102 | |
Hair mask—Cationic | Inoculum | 1 × 106 | 1 × 106 | 1 × 106 | 1 × 105 | 1 × 105 |
2 | 2 × 101 | 3.8 × 103 | 8 × 103 | <10 | 4 × 104 | |
7 | <10 | 1 × 101 | <10 | <10 | 5 × 103 | |
14 | <10 | <10 | <10 | <10 | 2 × 103 | |
21 | <10 | <10 | <10 | <10 | 1 × 103 | |
28 | <10 | <10 | <10 | <10 | 1 × 103 | |
Basic cream—Nonionic | Inoculum | 1 × 106 | 1 × 106 | 1 × 106 | 1 × 105 | 1 × 105 |
2 | 4 × 104 | <10 | 6.6 × 103 | 5.5 × 102 | 3.1 × 104 | |
7 | <10 | <10 | <10 | <10 | 8.5 × 103 | |
14 | <10 | <10 | <10 | <10 | 2 × 103 | |
21 | <10 | <10 | <10 | <10 | 1 × 103 | |
28 | <10 | <10 | <10 | <10 | 1 × 103 |
Preservative Level of Use 0.5% | Time of Reading (days) | E. coli (cfu/mL) | S. aureus (cfu/mL) | P. aeruginosa (cfu/mL) | C. albicans (cfu/mL) | A. brasiliensis (cfu/mL) |
---|---|---|---|---|---|---|
Maltol/P-80 (90/10) | Inoculum | 1.1 × 106 | 1 × 106 | 1.1 × 106 | 1.1 × 105 | 1 × 105 |
2 | <10 | <10 | <10 | <10 | 4.3 × 104 | |
7 | <10 | <10 | <10 | <10 | 6.7 × 103 | |
14 | <10 | <10 | <10 | <10 | 3 × 101 | |
21 | <10 | <10 | <10 | <10 | 2 × 101 | |
28 | <10 | <10 | <10 | <10 | <10 | |
Maltol/P-80/DDAC (95/2.5/2.5) | Inoculum | 1 × 106 | 1 × 106 | 1 × 106 | 1 × 105 | 1 × 105 |
2 | <10 | <10 | <10 | <10 | <10 | |
7 | <10 | <10 | <10 | <10 | <10 | |
14 | <10 | <10 | <10 | <10 | <10 | |
21 | <10 | <10 | <10 | <10 | <10 | |
28 | <10 | <10 | <10 | <10 | <10 | |
Maltol/DDAC (95/5) | Inoculum | 1 × 106 | 1 × 106 | 1 × 106 | 1 × 105 | 1 × 105 |
2 | <10 | <10 | <10 | 1.7 × 103 | 3 × 104 | |
7 | <10 | <10 | <10 | <10 | 7.2 × 103 | |
14 | <10 | <10 | <10 | <10 | 3 × 102 | |
21 | <10 | <10 | <10 | <10 | 2 × 101 | |
28 | <10 | <10 | <10 | <10 | <10 |
Preservative (ppm) | E. coli | S. aureus | P. aeruginosa | C. albicans | A. brasiliensis |
---|---|---|---|---|---|
Maltol/P-80 (90/10) | 0.32 | 0.26 | 0.77 | 0.67 | 0.33 |
Maltol/P-80/DDAC (95/2.5/2.5) | 1.76 | 0.86 | 0.97 | 0.54 | 0.14 |
Maltol/DDAC (95/5) | 0.37 | 0.76 | 0.73 | 0.04 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salama, P.; Gliksberg, A. The Use of Catalytic Amounts of Selected Cationic Surfactants in the Design of New Synergistic Preservative Solutions. Cosmetics 2021, 8, 54. https://doi.org/10.3390/cosmetics8020054
Salama P, Gliksberg A. The Use of Catalytic Amounts of Selected Cationic Surfactants in the Design of New Synergistic Preservative Solutions. Cosmetics. 2021; 8(2):54. https://doi.org/10.3390/cosmetics8020054
Chicago/Turabian StyleSalama, Paul, and Ariel Gliksberg. 2021. "The Use of Catalytic Amounts of Selected Cationic Surfactants in the Design of New Synergistic Preservative Solutions" Cosmetics 8, no. 2: 54. https://doi.org/10.3390/cosmetics8020054
APA StyleSalama, P., & Gliksberg, A. (2021). The Use of Catalytic Amounts of Selected Cationic Surfactants in the Design of New Synergistic Preservative Solutions. Cosmetics, 8(2), 54. https://doi.org/10.3390/cosmetics8020054