A Rapid and Sensitive Method for the Determination of Cannabidiol in Cosmetic Products by Liquid Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus
2.2. Reagents and Samples
2.3. Proposed Method
2.3.1. Standards Preparation
2.3.2. Samples Preparation
2.3.3. LC-MS/MS Analysis
3. Results and Discussion
3.1. Chromatographic Conditions
3.2. Standards Preparation
3.3. Samples Preparation
3.4. Analytical Figures of Merit of the Proposed Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oláh, A.; Tóth, B.I.; Borbíró, I.; Sugawara, K.; Szöllõsi, A.G.; Czifra, G.; Pál, B.; Ambrus, L.; Kloepper, J.; Camera, E. Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. J. Clin. Investig. 2014, 124, 3713–3724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casares, L.; García, V.; Garrido-Rodríguez, M.; Milán, E.; Collado, J.A.; García-Martín, A.; Peñarando, J.; Calzado, M.A.; De la Vega, L.; Muñoz, E. Cannabidiol induces antioxidant pathways in keratinocytes by targeting BACH1. Redox Biol. 2020, 28, 101321. [Google Scholar] [CrossRef] [PubMed]
- Jahawar, N.; Schoenberg, E.; Wang, J.V.; Saedi, N. The growing trend of cannabidiol in skincare products. Clin. Derm. 2019, 37, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Kim, M.S.; Lee, S.H.; Park, B.D. Epidermal endocannabinoid system (EES) and its cosmetic application. Cosmetics 2019, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- United Nations, Office on Drug and Crime. The Single Convention on Narcotic Drugs of 1961 as Amended by the 1972 Protocol. Available online: https://www.unodc.org/unodc/en/commissions/CND/conventions.html (accessed on 25 February 2021).
- CosIng Database—European Comission Database for Information on Cosmetic Substances and Ingredients. Available online: https://ec.europa.eu/growth/sectors/cosmetics/cosing_en (accessed on 25 February 2021).
- Regulation (EU) No 1307/2013 of the European Parliament and of the Council of 17 December 2013 Establishing Rules for Direct Payments to Farmers under Support Schemes within the Framework of the Common Agricultural Policy and Repealing Council Regulation (EC) No 637/2008 and Council Regulation (EC) No 73/2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32013R1307 (accessed on 25 February 2021).
- Lazarjani, M.P.; Torres, S.; Hooker, T.; Fowlie, C.; Young, O.; Seyfoddin, A. Methods for quantification of cannabinoids: A narrative review. J. Cannabis Res. 2020, 2, 35. [Google Scholar] [CrossRef]
- Liebling, J.P.; Clarkson, N.J.; Gibbs, B.W.; Yates, A.S.; O’Sullivan, S.E. An analysis of over-the-counter cannabidiol products in the United Kingdom. Cannabis Cannabinoid Res. 2020. [Google Scholar] [CrossRef]
- Brighenti, V.; Protti, M.; Anceschi, L.; Zanardi, C.; Mercolini, L.; Pellati, F. Emerging challenges in the extraction, analysis and bioanalysis of cannabidiol and related compounds. J. Pharm. Biomed. Anal. 2021, 192, 113633. [Google Scholar] [CrossRef]
- Inoue, K. Advances in Chromatographic Analysis of Cannabidiol (CBD). Anal. Sci. 2020, 36, 781–782. [Google Scholar] [CrossRef]
- Rossi, S.S.; Chiarotti, M. Solid-phase microextraction for cannabinoids analysis in hair and its possible application to other drugs. J. Anal. Toxicol. 1999, 23, 7–10. [Google Scholar] [CrossRef] [Green Version]
- Musshoff, F.; Junker, H.P.; Lachenmeier, D.W.; Kroener, L.; Madea, B. Fully automated determination of cannabinoids in hair samples using headspace solid-phase microextraction and gas chromatography-mass spectrometry. J. Anal. Toxicol. 2002, 26, 554–560. [Google Scholar] [CrossRef] [Green Version]
- Nadulski, T.; Pragst, F. Simple and sensitive determination of Δ9- tetrahydrocannabinol, cannabidiol and cannabinol in hair by combined silylation, headspace solid phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. B 2007, 846, 78–85. [Google Scholar] [CrossRef]
- Moosmann, B.; Roth, N.; Hastedt, M.; Bauer, A.J.; Pragst, F.; Auwarter, V. Cannabinoid findings in children hair—What do they really tell us? An assessment in the light of three different analytical methods with focus on interpretation of Δ9-tetrahydrocannabinolic acid. Drug Test. Anal. 2015, 7, 349–357. [Google Scholar] [CrossRef]
- Musshoff, F.; Lachenmeier, D.W.; Kroener, L.; Madea, B. Automated headspace solid-phase dynamic extraction for the de-termination of cannabinoids in hair samples. Forensic Sci. Int. 2003, 133, 32–38. [Google Scholar] [CrossRef]
- Fucci, N.; Giovanni, N.D.; Chiarotti, M. Simultaneous detection of some drugs of abuse in saliva samples by SPME tech-nique. Forensic Sci. Int. 2003, 134, 40–45. [Google Scholar] [CrossRef]
- Anzillotti, L.; Castrignano, E.; Rossi, S.S.; Chiarotti, M. Cannabinoids determination in oral fluids by SPME-GC/MS and UHPLC-MS/MS and its application on suspected drivers. Sci. Justice 2014, 54, 421–426. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Kroener, L.; Musshoff, F.; Madea, B. Determination of cannabinoids in hemp food products by use of headspace solid-phase microextraction and gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 2004, 378, 183–189. [Google Scholar] [CrossRef]
- Emidio, E.S.; Prata, V.D.M.; Dorea, H.S. Validation of an analytical method for analysis of cannabinoids in hair by head-space solid-phase microextraction and gas chromatography-ion trap tandem mass spectrometry. Anal. Chim. Acta. 2010, 670, 63–71. [Google Scholar] [CrossRef]
- Angeli, I.; Casati, S.; Ravelli, A.; Minoli, M.; Orioli, M. A novel single-step GC-MS/MS method for cannabinoids and 11-OH-THC metabolite analysis in hair. J. Pharm. Biomed. Anal. 2018, 155, 1–6. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Kroener, L.; Musshoff, F.; Madea, B. Application of tandem mass spectrometry combined with gas chromatography and headspace solid-phase dynamic extraction for the determination of drugs of abuse in hair samples. Rapid Commun. Mass Spectrom. 2003, 17, 472–478. [Google Scholar] [CrossRef]
- Emidio, E.S.; Prata, V.D.M.; Santana, F.J.M.D.; Dorea, H.S. Hollow fiber-based liquid phase microextraction with fractional design optimization and gas chromatography- tandem mass spectrometry for determination of cannabinoids in human hair. J. Chromatogr. B 2010, 878, 2175–2183. [Google Scholar] [CrossRef]
- Moradi, M.; Yamini, Y.; Baheri, T. Analysis of abuse drugs in urine using surfactant- assisted dispersive liquid-liquid mi-croextraction. J. Sep. Sci. 2011, 34, 1722–1729. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Xie, W. Determination of cannabinoids in biological samples using a new solid phase micro-extraction membrane and liquid chromatography-mass spectrometry. Forensic Sci. Int. 2006, 162, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Míguez-Framil, M.; Cocho, J.Á.; Tabernero, M.J.; Bermejo, A.M.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. An improved method for the determination of Δ9-tetrahydrocannabinol, cannabinol and cannabidiol in hair by liquid chromatography–tandem mass spectrometry. Microchem. J. 2014, 117, 7–17. [Google Scholar] [CrossRef]
- Sergi, M.; Montesano, C.; Odoardi, S.; Rocca, L.M.; Fabrizi, G.; Compagnone, D. Microextraction by packed sorbents coupled to liquid chromatography tandem mass spectrometry for the rapid and sensitive determination of cannabinoids in oral fluids. J. Chromatogr. A 2013, 1301, 139–146. [Google Scholar] [CrossRef]
- Pichini, S.; Malaca, S.; Gottardi, M.; Perez-Acevedo, A.P.; Papaseit, E.; Perez-Mana, C.; Farre, M.; Pacifi, R.; Tagliabracci, A.; Mannocchi, G.; et al. UHPLC-MS/MS analysis of cannabidiol metabolites in serum and urine samples. Application to an individual treated with medical cannabis. Talanta 2021, 223, 121772. [Google Scholar] [CrossRef]
- Pichini, S.; Mannocchi, G.; Gottardi, M.; Perez-Acevedo, A.P.; Poyatos, L.; Papaseit, E.; Perez-Mana, C.; Farre, M.; Pacifici, R.; Busardo, F.P. Fast and sensitive UHPLC-MS/MS analysis of cannabinoids and their acid precursors in pharmaceutical prep-arations of medical cannabis and their metabolites in conventional and non-conventional biological matrices of treated in-dividual. Talanta 2020, 209, 120537. [Google Scholar] [CrossRef]
- Meng, Q.; Buchanan, B.; Zuccolo, J.; Pouling, M.M.; Gabriele, J.; Baranowski, D.C. A reliable and validated LC-MS/MS method for the simultaneous quantification of 4 cannabinoids in 40 consumer products. PLoS ONE 2018, 135, 1–16. [Google Scholar] [CrossRef]
- Nemeškalová, A.; Hájková, K.; Mikulů, L.; Sýkora, D.; Kuchař, M. Combination of UV and MS/MS detection for the LC analysis of cannabidiol-rich products. Talanta 2020, 219, 121250. [Google Scholar] [CrossRef]
- Huber, S.; Harder, M.; Funck, K.; Erharter, K.; Popp, M.; Bonn, G.K.; Rainer, M. Novel Room Temperature Ionic Liquid for Liquid-Phase Microextraction of Cannabidiol from Natural Cosmetics. Separations 2020, 7, 45. [Google Scholar] [CrossRef]
- Vincent, U. JRC Guidelines for 1—Selecting And/Or Validating Analytical Methods for Cosmetics 2—Recommending Standardization Steps of Analytical Methods for Cosmetics; European Commission: Brussels, Belgium, 2015. [Google Scholar]
Instrumental Variable | |||||||
---|---|---|---|---|---|---|---|
LC | Injection volume | 10 μL | |||||
Column temperature | 35 °C | ||||||
Flow rate | 0.2 mL min−1 | ||||||
Mode | Isocratic | ||||||
Mobile phase | 80% MeOH: 20% H2O (both with 0.1% of formic acid) | ||||||
Precursor ion: 315 (CBD) | Precursor ion: 318 (CBD-D3) | ||||||
m/z = 193 a | m/z = 41 | m/z = 123 | m/z = 196 a | m/z = 41 | m/z = 123 | ||
MS/MS | Fragmentor | 132 V | 132 V | 132 V | 114 V | 114 V | 114 V |
Collision energy | 18 V | 70 V | 34 V | 18 V | 70 V | 34 V | |
Capillary voltage (ESI+) | 3 kV | ||||||
Gas temperature | 310 °C | ||||||
Gas flow | 12 L min−1 | ||||||
Nebulizer | 50 psi |
LOD (ng mL−1) | LOQ (ng mL−1) | MLOD (ng g−1) | MLOQ (ng g−1) | Repeatability (%RSD) | |||
---|---|---|---|---|---|---|---|
Intra-Day (N = 5) | Inter-Day (N = 5) | ||||||
2 ng mL−1 | 4 ng mL−1 | 2 ng mL−1 | 4 ng mL−1 | ||||
0.22 | 0.74 | 22 | 74 | 4.6 | 5.1 | 5.9 | 8.5 |
Sample a | Found Amount b (µg g−1) | Repeatability of Results RSD (%) | Relative Recovery b (for 2 ng mL−1) (%) | Relative Recovery b (for 4 ng mL−1) (%) |
---|---|---|---|---|
A | 140 ± 8 | 5.7 | 101 ± 4 | 114 ± 16 |
B | 316 ± 8 | 2.5 | 105.6 ± 1.2 | 109.0 ± 1.1 |
C | 2060 ± 50 | 2.4 | 100 ± 5 | 100 ± 7 |
D | 341 ± 17 | 5.0 | 113 ± 8 | 109 ± 11 |
E | N.D. | - | 100 ± 2 | 100 ± 5 |
F | N.D. | - | 110 ± 11 | 101 ± 13 |
G | 1304 ± 14 | 1.1 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schettino, L.; Prieto, M.; Benedé, J.L.; Chisvert, A.; Salvador, A. A Rapid and Sensitive Method for the Determination of Cannabidiol in Cosmetic Products by Liquid Chromatography–Tandem Mass Spectrometry. Cosmetics 2021, 8, 30. https://doi.org/10.3390/cosmetics8020030
Schettino L, Prieto M, Benedé JL, Chisvert A, Salvador A. A Rapid and Sensitive Method for the Determination of Cannabidiol in Cosmetic Products by Liquid Chromatography–Tandem Mass Spectrometry. Cosmetics. 2021; 8(2):30. https://doi.org/10.3390/cosmetics8020030
Chicago/Turabian StyleSchettino, Lorenza, Marta Prieto, Juan L. Benedé, Alberto Chisvert, and Amparo Salvador. 2021. "A Rapid and Sensitive Method for the Determination of Cannabidiol in Cosmetic Products by Liquid Chromatography–Tandem Mass Spectrometry" Cosmetics 8, no. 2: 30. https://doi.org/10.3390/cosmetics8020030
APA StyleSchettino, L., Prieto, M., Benedé, J. L., Chisvert, A., & Salvador, A. (2021). A Rapid and Sensitive Method for the Determination of Cannabidiol in Cosmetic Products by Liquid Chromatography–Tandem Mass Spectrometry. Cosmetics, 8(2), 30. https://doi.org/10.3390/cosmetics8020030