Tyrosinase and Melanogenesis Inhibition by Indigenous African Plants: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Disclaimer
Conflicts of Interest
References
- Masum, M.N.; Yamauchi, K.; Mitsunaga, T. Tyrosinase Inhibitors from Natural and Synthetic Sources as Skin-lightening Agents. Rev. Agric. Sci. 2019, 7, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jawaid, S.; Khan, T.H.; Osborn, H.M.; Williams, N.A.O. Tyrosinase activated melanoma prodrugs. Anticancer. Agents Med. Chem. 2009, 9, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Mapunya, M.B.; Lall, N. Melanin and Its Role in Hyper-Pigmentation–Current Knowledge and Future Trends in Research. Breakthr. Melanoma Res. 2011. [Google Scholar] [CrossRef] [Green Version]
- Videira, I.F.D.S.; Moura, D.F.L.; Magina, S. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 2013, 88, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Campos, P.M.; da Silva Horinouchi, C.D.; da Silveira Prudente, A.; Cechinel-Filho, V.; de Almeida Cabrini, D.; Otuki, M.F. Effect of a Garcinia gardneriana (Planchon and Triana) Zappi hydroalcoholic extract on melanogenesis in B16F10 melanoma cells. J. Ethnopharmacol. 2013, 148, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Tacchini, M.; Poli, F.J.I.C. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind. Crops Prod. 2018, 122, 498–505. [Google Scholar] [CrossRef]
- Hollinger, J.C.; Angra, K.; Halder, R.M. Are natural ingredients effective in the management of hyperpigmentation? A systematic review. J. Clin. Aesthet Dermatol. 2018, 11, 28–37. [Google Scholar]
- Gillbro, J.M.; Olsson, M.J. The melanogenesis and mechanisms of skin-lightening agents–existing and new approaches. Int. J. Cosmet. Sci. 2011, 33, 210–221. [Google Scholar] [CrossRef]
- Couteau, C.; Coiffard, L. Overview of skin whitening agents: Drugs and cosmetic products. Cosmetic 2016, 3, 27. [Google Scholar] [CrossRef]
- Sari, D.M.; Anwar, E.; Arifianti, A.E. Antioxidant and tyrosinase inhibitor activities of ethanol extracts of brown seaweed (Turbinaria conoides) as lightening ingredient. Phcog. J. 2019, 11, 379–382. [Google Scholar] [CrossRef] [Green Version]
- Mohiuddin, A.K. Skin Lightening & Management of Hyperpigmentation. Pharma Sci. Anal. Res. J. 2019, 2. [Google Scholar] [CrossRef]
- Sagoe, D.; Pallesen, S.; Dlova, N.C.; Lartey, M.; Ezzedine, K.; Dadzie, O. The global prevalence and correlates of skin bleaching: A meta-analysis and meta-regression analysis. Int. J. Dermatol. 2019, 58, 24–44. [Google Scholar] [CrossRef] [Green Version]
- Adebajo, S.B. An epidemiological survey of the use of cosmetic skin lightening cosmetics among traders in Lagos, Nigeria. Mercury 2002, 5, 434–438. [Google Scholar]
- Dlova, N.C.; Hamed, S.H.; Tsoka-Gwegweni, J.; Grobler, A. Skin lightening practices: An epidemiological study of South African women of African and Indian ancestries. Br. J. Dermatol. 2015, 173, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wone, I.; Tal-Dia, A.; Diallo, O.F.; Badiane, M.; Touré, K.; Diallo, I. Prevalence of the use of skin bleaching cosmetics in two areas in Dakar (Sénégal). Dakar Med. 2000, 45, 154–157. [Google Scholar]
- Charles, C. Skin bleaching and the deconstruction of blackness. Ideaz 2003, 2, 42–54. [Google Scholar]
- Charles, C.A. Skin bleachers’ representations of skin color in Jamaica. J. Black Stud. 2009, 40, 153–170. [Google Scholar] [CrossRef]
- Arbab, A.; Eltahir, M.M. Review on skin whitening agents. Khartoum. Pharm. J. 2010, 13, 5–9. [Google Scholar]
- Dlova, N.; Hamed, S.H.; Tsoka-Gwegweni, J.; Grobler, A.; Hift, R. Women’s perceptions of the benefits and risks of skin-lightening creams in two South African communities. J. Cosmet. Dermatol. 2014, 13, 236–241. [Google Scholar] [CrossRef]
- Nnoruka, E.; Okoye, O. Topical steroid abuse: Its use as a depigmenting agent. J. Natl. Med. Assoc. 2006, 98, 934. [Google Scholar] [PubMed]
- Mulholland, D.A.; Mwangi, E.M.; Dlova, N.C.; Plant, N.; Crouch, N.R.; Coombes, P.H. Non-toxic melanin production inhibitors from Garcinia livingstonei (Clusiaceae). J. Ethnopharmacol. 2013, 149, 570–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villareal, M.O.; Kume, S.; Bourhim, T.; Bakhtaoui, F.Z.; Kashiwagi, K.; Han, J.; Gadhi, C.; Isoda, H. Activation of MITF by argan oil leads to the inhibition of the tyrosinase and dopachrome tautomerase expressions in B16 murine melanoma cells. Evid. Based Complement. Altern. Med. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalek, I.M.; Benn, E.K.; Dos Santos, F.L.C.; Gordon, S.; Wen, C.; Liu, B. A systematic review of global legal regulations on the permissible level of heavy metals in cosmetics with particular emphasis on skin lightening products. Environ. Res. 2019, 170, 187–193. [Google Scholar] [CrossRef]
- Chan, T.Y. Inorganic mercury poisoning associated with skin-lightening cosmetic products. Clin. Toxicol. 2011, 49, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Davids, L.M.; Van Wyk, J.; Khumalo, N.P.; Jablonski, N.G. The phenomenon of skin lightening: Is it right to be light? S. Afr. J. Sci. 2016, 112, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kamagaju, L.; Morandini, R.; Gahongayire, F.; Stévigny, C.; Ghanem, G.; Pirotte, G.; Duez, P. Survey on skin-lightening practices and cosmetics in Kigali, Rwanda. Int. J. Dermatol. 2016, 55, 45–51. [Google Scholar] [CrossRef]
- Gbetoh, M.H.; Amyot, M. Mercury, hydroquinone and clobetasol propionate in skin lightening products in West Africa and Canada. Environ. Res. 2016, 150, 403–410. [Google Scholar] [CrossRef]
- Di Petrillo, A.; González-Paramás, A.M.; Era, B.; Medda, R.; Pintus, F.; Santos-Buelga, C.; Fais, A. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complement. Altern. Med. 2016, 16, 453. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.S.; Estanqueiro, M.; Oliveira, M.B.; Sousa Lobo, J.M. Main benefits and applicability of plant extracts in skin care products. Cosmetics 2015, 2, 48–65. [Google Scholar] [CrossRef] [Green Version]
- Kumari, S.; Elancheran, R.; Devi, R. Phytochemical screening, antioxidant, antityrosinase, and antigenotoxic potential of Amaranthus viridis extract. Indian J. Pharmacol. 2018, 50, 130. [Google Scholar] [PubMed]
- Mapunya, M.B.; Nikolova, R.V.; Lall, N. Melanogenesis and antityrosinase activity of selected South African plants. Evid. Based Complement. Altern. Med. 2012, 2012, 1–6. [Google Scholar] [CrossRef]
- Momtaz, S.; Mapunya, B.M.; Houghton, P.J.; Edgerly, C.; Hussein, A.; Naidoo, S.; Lall, N. Tyrosinase inhibition by extracts and constituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening. J. Ethnopharmacol. 2008, 119, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Twilley, D.; Lall, N. African plants with dermatological and ocular relevance. Toxicol. Surv. Afr. Med. Plants 2014, 493–512. [Google Scholar] [CrossRef]
- Abdillahi, H.S.; Finnie, J.F.; Van Staden, J. Anti-inflammatory, antioxidant, anti-tyrosinase and phenolic contents of four Podocarpus species used in traditional medicine in South Africa. J. Ethnopharmacol. 2011, 136, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Muddathir, A.M.; Yamauchi, K.; Batubara, I.; Mohieldin, E.A.M.; Mitsunaga, T. Anti-tyrosinase, total phenolic content and antioxidant activity of selected Sudanese medicinal plants. S. Afr. J. Bot. 2017, 109, 9–15. [Google Scholar] [CrossRef]
- Zhu, W.; Gao, J. The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. J. Investig. Dermatol. Symp. Proc. 2008, 13, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Mapunya, M.B.; Hussein, A.A.; Rodriguez, B.; Lall, N. Tyrosinase activity of Greyia flanaganii (Bolus) constituents. Phytomedicine 2011, 18, 1006–1012. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Baek, N.; Nam, T.G. Natural, semisynthetic and synthetic tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2016, 31, 1–13. [Google Scholar] [CrossRef]
- Momtaz, S.; Lall, N.; Basson, A. Inhibitory activities of mushroom tyrosine and DOPA oxidation by plant extracts. S. Afr. J. Bot. 2008, 74, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.A. Recent advances in treatment of skin disorders using herbal products. J. Skin 2017, 1, 6–7. [Google Scholar]
- Huang, Z.; Hashida, K.; Makino, R.; Kawamura, F.; Shimizu, K.; Kondo, R.; Ohara, S. Evaluation of biological activities of extracts from 22 African tropical wood species. J. Wood Sci. 2009, 55, 225–229. [Google Scholar] [CrossRef]
- Chao, H.C.; Najjaa, H.; Villareal, M.O.; Ksouri, R.; Han, J.; Neffati, M.; Isoda, H. Arthrophytum scoparium inhibits melanogenesis through the down-regulation of tyrosinase and melanogenic gene expressions in B 16 melanoma cells. Exp. Dermatol. 2013, 22, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Sallam, A.; Mira, A.; Ashour, A.; Shimizu, K. Acetylcholine esterase inhibitors and melanin synthesis inhibitors from Salvia officinalis. Phytomedicine 2016, 23, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Lall, N.; Mogapi, E.; De Canha, M.N.; Crampton, B.; Nqephe, M.; Hussein, A.A.; Kumar, V. Insights into tyrosinase inhibition by compounds isolated from Greyia radlkoferi Szyszyl using biological activity, molecular docking and gene expression analysis. Bioorg. Med. Chem. 2016, 24, 5953–5959. [Google Scholar] [CrossRef]
- Kishore, N.; Twilley, D.; Blom van Staden, A.; Verma, P.; Singh, B.; Cardinali, G.; Kovacs, D.; Picardo, M.; Kumar, V.; Lall, N. Isolation of flavonoids and flavonoid glycosides from Myrsine africana and their inhibitory activities against mushroom tyrosinase. J. Nat. Prod. 2018, 81, 49–56. [Google Scholar] [CrossRef]
- Kamagaju, L.; Morandini, R.; Bizuru, E.; Nyetera, P.; Nduwayezu, J.B.; Stévigny, C.; Ghanem, G.; Duez, P. Tyrosinase modulation by five Rwandese herbal medicines traditionally used for skin treatment. J. Ethnopharmacol. 2013, 146, 824–834. [Google Scholar] [CrossRef]
- Sonka, L. Exploring Anti-Tyrosinase Bioactive Compounds from the Cape Flora. Master’s Thesis, University of the Western Cape, Cape Town, South Africa, 2018. [Google Scholar]
- Takou, D.M.; Waffo, A.F.K.; Langat, M.K.; Wansi, J.D.; Mulcahy-Ryan, L.E.; Schwikkard, S.L.; Opara, E.I.; Mas-Claret, E.; Mulholland, D.A. Melanin Production Inhibitors from the West African Cassipourea Congoensis. Planta Med. 2019, 6, 50–56. [Google Scholar] [CrossRef]
- Bourhim, T.; Villareal, M.O.; Gadhi, C.; Hafidi, A.; Isoda, H. Depigmenting effect of argan press-cake extract through the down-regulation of Mitf and melanogenic enzymes expression in B16 murine melanoma cells. Cytotechnology 2018, 70, 1389–1397. [Google Scholar] [CrossRef]
- Momtaz, S. Tyrosinase Inhibitors Isolated from Ceratonia Siliqua (L.) and Sideroxylon Inerme (L.). Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2007. [Google Scholar]
- Zhang, J.; Li, D.; Lv, Q.; Ye, F.; Jing, X.; Masters, E.T.; Shimizu, N.; Abe, M.; Akihisa, T.; Feng, F. Compositions and melanogenesis-inhibitory activities of the extracts of defatted shea (Vitellaria paradoxa) kernels from seven African countries. J. Food Compos. Anal. 2018, 70, 89–97. [Google Scholar] [CrossRef]
- Kawano, M.; Matsuyama, K.; Miyamae, Y.; Shinmoto, H.; Kchouk, M.E.; Morio, T.; Shigemori, H.; Isoda, H. Antimelanogenesis effect of Tunisian herb Thymelaea hirsuta extract on B16 murine melanoma cells. Exp. Dermatol. 2007, 16, 977–984. [Google Scholar] [CrossRef]
- Miyamae, Y.; Villareal, M.O.; Abdrabbah, M.B.; Isoda, H.; Shigemori, H. Hirseins A and B, daphnane diterpenoids from Thymelaea hirsuta that inhibit melanogenesis in B16 melanoma cells. J. Nat. Prod. 2009, 72, 938–941. [Google Scholar] [CrossRef] [PubMed]
- Villareal, M.O.; Han, J.; Yamada, P.; Shigemori, H.; Isoda, H. Hirseins inhibit melanogenesis by regulating the gene expressions of Mitf and melanogenesis enzymes. Exp. Dermatol. 2010, 19, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Momtaz, S.; Lall, N.; Hussein, A.; Ostad, S.N.; Abdollahi, M. Investigation of the possible biological activities of a poisonous South African plant; Hyaenanche globosa (Euphorbiaceae). Pharmacogn. Mag. 2010, 6, 34. [Google Scholar]
- Jdey, A.; Falleh, H.; Jannet, S.B.; Hammi, K.M.; Dauvergne, X.; Magné, C.; Ksouri, R. Anti-aging activities of extracts from Tunisian medicinal halophytes and their aromatic constituents. EXCLI J. 2017, 16, 755. [Google Scholar]
- Popoola, O.K.; Marnewick, J.L.; Rautenbach, F.; Iwuoha, E.I.; Hussein, A.A. Acylphloroglucinol derivatives from the South African Helichrysum niveum and their biological activities. Molecules 2015, 20, 17309–17324. [Google Scholar] [CrossRef] [Green Version]
- Thibane, V.S.; Ndhlala, A.R.; Abdelgadir, H.A.; Finnie, J.F.; Van Staden, J. The cosmetic potential of plants from the Eastern Cape Province traditionally used for skincare and beauty. S. Afr. J. Bot. 2019, 122, 475–483. [Google Scholar] [CrossRef]
- Thibane, V.S.; Ndhlala, A.R.; Finnie, J.F.; Van Staden, J. Cosmeceutical efficiency by some plant extracts used traditionally for skin care in inhibiting tyrosinase activity in a human epidermal melanocyte (HEM) cell line. S. Afr. J. Bot. 2019, 126, 256–260. [Google Scholar] [CrossRef]
- Okunji, C.; Komarnytsky, S.; Fear, G.; Poulev, A.; Ribnicky, D.M.; Awachie, P.I.; Ito, Y.; Raskin, I. Preparative isolation and identification of tyrosinase inhibitors from the seeds of Garcinia kola by high-speed counter-current chromatography. J. Chromatogr. A 2007, 1151, 45–50. [Google Scholar] [CrossRef]
- Sadeer, N.B.; Llorent-Martínez, E.J.; Bene, K.; Mahomoodally, M.F.; Mollica, A.; Sinan, K.I.; Stefanucci, A.; Ruiz-Riaguas, A.; Fernández-de Córdova, M.L.; Zengin, G. Chemical profiling, antioxidant, enzyme inhibitory and molecular modelling studies on the leaves and stem bark extracts of three African medicinal plants. J. Pharm. Biomed. Anal. 2019, 174, 19–33. [Google Scholar] [CrossRef]
- Stapelberg, J.; Nqephe, M.; Lambrechts, I.; Crampton, B.; Lall, N. Selected South African plants with tyrosinase enzyme inhibition and their effect on gene expression. S. Afr. J. Bot. 2019, 120, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Rondo, M. Phytochemical and Biological Studies on Some South African Plants Used in Traditional Medicine for Skin Hyperpigmentation. Master’s Thesis, University of the Western Cape, Cape Town, South Africa, 2017. [Google Scholar]
- Lall, N.; Van Staden, A.B.; Rademan, S.; Lambrechts, I.; De Canha, M.N.; Mahore, J.; Winterboer, S.; Twilley, D. Antityrosinase and anti-acne potential of plants traditionally used in the Jongilanga community in Mpumalanga. S. Afr. J. Bot. 2019, 126, 241–249. [Google Scholar] [CrossRef]
- Nyila, M. Antilisterial Bioactivity and/or Biofilm-Formation by Compounds from Plectranthus Ecklonii Benth. and Acacia Karroo Hayne. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2011. [Google Scholar]
- Ronauld, N.G.E. Detection of Selective Tyrosinase Inhibitors from Some South African Plant Extracts of Lamiaceae Family. Master’s Thesis, University of the Western Cape, Cape Town, South Africa, 2016. [Google Scholar]
- Lehbili, M.; Alabdul Magid, A.; Kabouche, A.; Voutquenne-Nazabadioko, L.; Abedini, A.; Morjani, H.; Gangloff, S.C.; Kabouche, Z. Antibacterial, antioxidant and cytotoxic activities of triterpenes and flavonoids from the aerial parts of Salvia barrelieri Etl. Nat. Prod. Res. 2018, 32, 2683–2691. [Google Scholar] [CrossRef] [PubMed]
- Sinan, K.I.; Bene, K.; Zengin, G.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Picot-Allain, C.M.N.; Mollica, A.; Rengasamy, K.R.; Mahomoodally, M.F. A comparative study of the HPLC-MS profiles and biological efficiency of different solvent leaf extracts of two African plants: Bersama abyssinica and Scoparia dulcis. Int. J. Environ. 2019, 1–13. [Google Scholar] [CrossRef]
- Lee, D.E.; Kwon, J.E.; Choung, E.S.; Lee, S.R.; Kang, S.C. The antiwrinkle and antimelanogenic effects of the nonedible part of Sorghum bicolor (L.) Moench and their augmentation by fermentation. J. Cosmet. Sci. 2017, 68, 271–283. [Google Scholar] [PubMed]
- Bene, K.; Sinan, K.I.; Zengin, G.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Aumeeruddy, M.Z.; Xiao, J.; Mahomoodally, M.F. A multidirectional investigation of stem bark extracts of four African plants: HPLC-MS/MS profiling and biological potentials. J. Pharm. Biomed. Anal. 2019, 168, 217–224. [Google Scholar] [CrossRef]
- Elansary, H.O.; Mahmoud, E.A.; Shokralla, S.; Yessoufou, K. Diversity of plants, traditional knowledge, and practices in local cosmetics: A case study from Alexandria, Egypt. Econ. Bot. 2015, 69, 114–126. [Google Scholar] [CrossRef]
- Van Wyk, B.E. The potential of South African plants in the development of new medicinal products. S. Afr. J. Bot. 2011, 77, 812–829. [Google Scholar] [CrossRef] [Green Version]
- Leyden, J.J.; Shergill, B.; Micali, G.; Downie, J.; Wallo, W. Natural options for the management of hyperpigmentation. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 1140–1145. [Google Scholar] [CrossRef]
- Kim, J.S.; Seo, Y.C.; No, R.H.; Lee, H.Y. Improved cosmetic activity by optimizing the Lithospermum erythrorhizon extraction process. Cytotechnology 2015, 67, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Jennifer, C.; Stephie, C.M.; Abhishri, S.B.; Shalini, B.U. A review on skin whitening property of plant extracts. Int. J. Pharma Bio Sci. 2012, 3, 332–347. [Google Scholar]
- Parvez, S.; Kang, M.; Chung, H.S.; Bae, H. Naturally occurring tyrosinase inhibitors: Mechanism and applications in skin health, cosmetics and agriculture industries. Phytother. Res. 2007, 21, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kang, S.M.; Sok, C.H.; Hong, J.T.; Oh, J.Y.; Jeon, Y.J. Cellular activities and docking studies of eckol isolated from Ecklonia cava (Laminariales, Phaeophyceae) as potential tyrosinase inhibitor. Algae 2015, 30, 163–170. [Google Scholar]
- Jara, J.R.; Solano, F.; Lozano, J.A. Assays for mammalian tyrosinase: A comparative study. Pigment Cell Res. 1988, 1, 332–339. [Google Scholar] [CrossRef]
- Faig, J.J.; Moretti, A.; Joseph, L.B.; Zhang, Y.; Nova, M.J.; Smith, K.; Uhrich, K.E. Biodegradable kojic acid-based polymers: Controlled delivery of bioactives for melanogenesis inhibition. Biomacromolecules 2017, 18, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.S. Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity. Materials 2012, 5, 1661–1685. [Google Scholar] [CrossRef] [Green Version]
- Correia, A.F.; Segovia, J.F.O.; Gonçalves, M.C.A.; De Oliveira, V.L.; Silveira, D.; Carvalho, J.C.T.; Kanzaki, L.I.B. Amazonian plant crude extract screening for activity against multidrug-resistant bacteria. Eur. Rev. Med. 2008, 12, 369–380. [Google Scholar]
- Zargoosh, Z.; Ghavam, M.; Bacchetta, G.; Tavili, A. Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lall, N.; Kishore, N. Are plants used for skin care in South Africa fully explored? J. Ethnopharmacol. 2014, 153, 61–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, M.; Hearing, V.J. Modifying skin pigmentation–approaches through intrinsic biochemistry and exogenous agents. Drug Discov. Today Dis. Mech. 2008, 5, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Smit, N.; Vicanova, J.; Pavel, S. The hunt for natural skin whitening agents. Int. J. Mol. Sci. 2009, 10, 5326–5349. [Google Scholar] [CrossRef] [PubMed]
- Fisk, W.A.; Agbai, O.; Lev-Tov, H.A.; Sivamani, R.K. The use of botanically derived agents for hyperpigmentation: A systematic review. J. Am. Acad. Dermatol. 2014, 70, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Dlova, N.C.; Hendricks, N.E.; Martincgh, B.S. Skin-lightening creams used in Durban, South Africa. Int. J. Dermatol. 2012, 51, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Olumide, Y.M. Use of skin lightening cream. Br. Med. J. 2010, 342, 345–346. [Google Scholar] [CrossRef] [PubMed]
Family | Plant Name | Region | Part Used | Results | Reference |
---|---|---|---|---|---|
Anacardiaceae | Harpephyllum caffrum | SA (EC) | Leaves Bark | 26% melanin inhibition at 6.25 μg/mL | [32] |
Chenopodiaceae | Arthrophytum scoparium | TUN | Stems | 52% melanin inhibition | [43] |
Clusiaceae | Garcinia livingstonei | Clusiaceae | Bark | isolated compounds, <0.25 MC at 25 μg/mL | [22] |
Lamiaceae | Salvia officinalis | EGY | Aerial parts | MC at 27% at 10, 20 and 40 μg/mL | [44] |
Melianthaceae | Greyia flanaganii | SA (EC) | Leaves | 20% melanin inhibition at 6.25 μg/mL | [4] |
Melianthaceae | Greyia radlkoferi | SA (MP) | Leaves | isolated compound, 50% melanin inhibition at 12.5 μg/mL | [45] |
Myrsinaceae | Myrsine africana | SA (EC, FS, GAU, KZN, LP, MP, NW, WC) | Shoots | 50% melanin inhibition at 50 μg/mL | [46] |
Myrsinaceae | Myrsine africana | SA (EC, FS, GAU, KZN, LP, MP, NW, WC) | Shoots | 18% melanin inhibition at 12.50 μg/mL | [40] |
Pedaliaceae | Sesamum angolense | RWA | Leaves | cell pellets indicate no significant inhibition | [47] |
Picrodendraceae | Hyaenanche globosa | SA (WC) | Leaves Roots Stems | - | [40] |
Proteaceae | Protea madiensis | NIG, ETH | Root bark | cell pellets indicates strong inhibition | [47] |
Proteaceae | Serruria furcellata | SA (WC) | Aerial parts | 94.3% melanin inhibition at 50 μg/mL | [48] |
Rhizophoracea | Cassipourea congoensis | SEN, NIG, DRC, UGA, TZA, MLI | Roots | isolated compounds, <0.2 pg/mL MC at 10 μg/mL and 100 μg/mL | [49] |
Rubiaceae | Dolichopentas longiflora | RWA | Leaves Roots | cell pellet indicate increase | [47] |
Sapotaceae | Argania spinosa | MAR | Fruits | 55% melanin inhibition at 50 μg/mL | [50] |
Sapotaceae | Argania spinosa | MAR | Fruits | >50% melanin inhibition at 1/100 | [23] |
Sapotaceae | Sideroxylon inerme | SA (KZN) | Stem-bark | 37% melanin inhibition at 6.2 μg/mL | [33,51] |
Sapotaceae | Vitellaria paradoxa | MLI, ETH, UGA | Fruit | Cameroon = 10.1% MC at 100 μg/mL Chad = 10.2% MC at 100 μg/mL Sudan = 10.9% MC at 100 μg/mL | [52] |
Thymelaeaceae | Thymelaea hirsuta | TUN | Leaves | > 50% melanin inhibition of melanin | [53] |
Thymelaeaceae | Thymelaea hirsuta | TUN | Leaves | isolated compound, 37% melanin inhibition at 0.1 μg/mL | [54] |
Thymelaeaceae | Thymelaea hirsuta | TUN | Leaves | isolated compound, 50% melanin inhibition at 1 μg/mL isolated compound, 33% melanin inhibitionat 0.1 μg/mL | [55] |
Family | Plant Name | Region | Part Used | Results (IC50 or Other Values) | Reference |
---|---|---|---|---|---|
Anacardiaceae | Harpephyllum caffrum | SA (EC) | Leaves Bark | 92% inhibition of L-tyrosine at 500 μg/mL 60% inhibition of L-DOPA at 500 μg/mL IC50 40 ± 0.035 μg/mL | [32] |
Anacardiaceae | Hyaenanche globosa | SA (EC) | Leaves Bark | L-DOPA at 500 μg/mL = 42% inhibition L-tyrosine at 500 μg/mL = 92% inhibition IC50 27.1 ± 042 μg/mL | [40] |
Anacardiaceae | Hyaenanche globosa | SA (EC) | Leaves Bark | 90.4% TYR inhibition at 200 μg/mL | [56] |
Apiaceae | Pituranthos scoparius | TUN | Aerial parts | IC50 125.01 ± 0.72 μg/mL using L-tyrosine IC50 270.51 ± 0.76 μg/mL using L-DOPA | [57] |
Asteraceae | Helichrysum niveum | SA (WC) | Aerial parts | Isolated compound, 35.63 ± 4.67 μg/mL | [58] |
Brassiaceae | Rorippa nasturtium-aquaticum | SA (EC) | Leaves | IC50 22.24 μg/mL | [59] |
Brassiaceae | Rorippa nasturtium-aquaticum | SA (EC) | Leaves | IC50 1.513 μg/mL | [60] |
Capparaceae | Cleome arabica | TUN | Aerial parts | IC50 124.4 ± 0.69 μg/mL L-tyrosine IC50 243.43 ± 2.71 μg/mL using L-DOPA | [57] |
Chenopodiaceae | Haloxylon articulatum | ALG, MAR, TUN | Shoot | IC50 160 μg/mL using L-DOPA as substrate IC50 using L- tyrosine not significant | [57] |
Clusiaceae | Garcinia kola | ALG | Seed | 79% TYR inhibition at 500 μg/mL | [61] |
Euphorbiaceae | Macaranga hurifolia | NIG, GHA | Leaves Stem bark | Leaf extracts = 159.42 mg KAE/g Bark extracts = 160.42 mg KAE/g | [62] |
Fabaceae | Ceratonia siliqua | ALG | Leaves | crude extract, 50% TYR inhibition at 200 μg/mL isolate compounds, 90% TYR inhibition at 200 μg/mL | [51] |
Fabaceae | Ormocarpum trichocarpum | SA (KZN, LP, MP) | Leaves Stems | IC50 2.95 ± 1.76 μg/mL using L-tyrosine | [63] |
Fabaceae | Rhynchosia villosa | SA (EC, KZN, MP) | Root | 56.40% TYR inhibition at 100 μg/mL | [64] |
Fabaceae | Vachellia karroo | SA (EC, FS, GAU, KZN, MP, NC, NW, WC) | Roots | IC50 6.84 μg/mL | [63] |
Fabaceae | Acacia nilotica | SUD SA (GAU, KZN, LP, MP, NW) | Pods Bark | pod extract, IC50 8.61 ± 0.94 μg/mL using L-tyrosine pod extract, 98.3% TYR inhibition at 500 μg/mL | [36] |
Fabaceae | Acacia nilotica | SUD SA (GAU, KZN, LP, MP, NW) | Pods Bark | IC50 12.97 ± 1.07 μg/mL | [65] |
Lamiaceae | Plectranthus ecklonii | SA (EC, KZN, MP) | Aerial parts | IC50 61.73 ± 2.69 μg/mL >70% at 100 μg/mL | [66] |
Lamiaceae | Plectranthus ecklonii | SA (EC, KZN, MP) | Aerial parts | IC50 21.58 μg/mL | [67] |
Lamiaceae | Salvia barrelieri | ALG | Aerial parts | 27% TYR inhibition at 1.5 mg/mL | [68] |
Melianthaceae | Greyia flanaganii | SA (EC) | Leaves | 95% TYR inhibition at 200 μg/mL Isolated compound, IC50 17.86 μg/mL | [4] |
Melianthaceae | Bersama abyssinica | IC | Leaves | 148.94 mg KAE/g | [69] |
Melianthaceae | Greyia radlkoferi | SA (MP) | Leaves | IC50 17.96 μg/mL using L-tyrosine IC50 using L- DOPA not significant | [45] |
Myrsinaceae | Myrsine africana | SA (EC, FS, GAU, KZN, LP, MP, NW, WC) | Shoots | IC50 0.12 ± 0.001 mg/mL | [46] |
Myrsinaceae | Myrsine africana | SA (EC, FS, GAU, KZN, LP, MP, NW, WC) | Shoots | L-DOPA at 500 μg/mL = 62% inhibition L-tyrosine at 500 μg/mL = 83% inhibition IC50 22.51 ± 0.42 μg/mL | [40] |
Myrsinaceae | Myrsine africana | SA (EC, FS, GAU, KZN, LP, MP, NW, WC) | Shoots | IC50 27.4 μg/mL using L-tyrosine | [63] |
Pedaliaceae | Sesamum angolense | RWA | Leaves | IC50 24 μg/mL | [47] |
Poaceae | Sorghum bicolor | TUN | Stalk | 40% TYR inhibition (in comparison to untreated control) | [70] |
Podocarpaceae | Podocarpus elongates | SA (KZN) | Stems | 74% TYR inhibition at 1 mg/mL EC50 = 0.14mg/mL | [35] |
Proteaceae | Protea madiensis | NIG, ETH | Root bark Leaves | 31 ± 4 μg/mL | [47] |
Proteaceae | Serruria furcellata | SA (WC) | Aerial parts | 95.49% TYR inhibition at 200 μg/mL 80.84% TYR inhibition at 50 μg/mL | [48] |
Rhizophoraceae | Cassipourea congoensis | SEN, NIG, DRC, UGA, TZA, MLI | Roots | crude extract, >80% TYR inhibition at 10 μg/mL and 100 μg/mL | [49] |
Rhizophoraceae | Cassipourea flanaganii | SA (EC, KZN) | Bark | IC50 22.24 ± 1.32 μg/mL | [59] |
Rhizophoraceae | Cassipourea flanaganii | SA (EC, KZN) | Bark | IC50 1.425 μg/mL | [60] |
Rubiaceae | Dolichopentas longiflora | RWA | Leaves Roots | IC50 26 ± 2 μg/mL | [47] |
Sapotaceae | Sideroxylon inerme | SA (KZN) | Stem-bark | 70% TYR inhibition at 200 μg/mL | [33,51] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opperman, L.; De Kock, M.; Klaasen, J.; Rahiman, F. Tyrosinase and Melanogenesis Inhibition by Indigenous African Plants: A Review. Cosmetics 2020, 7, 60. https://doi.org/10.3390/cosmetics7030060
Opperman L, De Kock M, Klaasen J, Rahiman F. Tyrosinase and Melanogenesis Inhibition by Indigenous African Plants: A Review. Cosmetics. 2020; 7(3):60. https://doi.org/10.3390/cosmetics7030060
Chicago/Turabian StyleOpperman, Laurentia, Maryna De Kock, Jeremy Klaasen, and Farzana Rahiman. 2020. "Tyrosinase and Melanogenesis Inhibition by Indigenous African Plants: A Review" Cosmetics 7, no. 3: 60. https://doi.org/10.3390/cosmetics7030060
APA StyleOpperman, L., De Kock, M., Klaasen, J., & Rahiman, F. (2020). Tyrosinase and Melanogenesis Inhibition by Indigenous African Plants: A Review. Cosmetics, 7(3), 60. https://doi.org/10.3390/cosmetics7030060