A Critical View of Different Botanical, Molecular, and Chemical Techniques Used in Authentication of Plant Materials for Cosmetic Applications
Abstract
:1. Introduction
- -
- Frauds, intentional or not, for examples of raw plant material that do not conform to the desired plant, the sample provided, or the biological activities. The plant material can be picked by mistake because of its physical resemblance to the desired species.
- -
- Falsification of the product origin (place of picking, date of harvest)
- -
- Adulteration by partial contamination with other plants
- -
- Adulteration by adding products intended to increase the weight with cheap products devoid of interest (e.g., wheat flour to be mixed with any white powder)
- -
- Toxins resulting from the proliferation of microorganisms before or after harvest
- -
- Remnants of phytosanitary products (forbidden ones or used too late before harvest)
2. Botany in Authentication
3. Molecular Biology Methods Based on Genetic Fingerprints
3.1. Presentation of the Different Types of Molecular Markers
3.2. Restriction Fragment Length Polymorphisms (RFLP)
3.3. Simple Sequence Repeats (SSR) or Microsatellites
3.4. Random Amplification of Polymorphic DNA (RAPD)
3.5. Amplified Fragment Length Polymorphism (AFLP)
3.6. Inter-Simple Sequence Repeats (ISSR)
3.7. Sequence Characterization of Amplified Regions (SCAR)
3.8. DNA Barcoding
3.9. Loop Mediated Isothermal Amplification (LAMP)
3.10. Next Generation Sequencing (NGS)
3.11. Important Remarks about DNA Markers for Authentication
4. Analytical Chemistry Techniques Based on Biochemical Patterns
4.1. High Performance Liquid Chromatography (HPLC)
4.2. Gas Chromatography (GC)
4.3. Mass Spectrometry (MS)
4.4. Nuclear Magnetic Resonance (NMR)
4.5. Infrared Spectroscopy (IR)
4.6. Metabolomic Approaches
4.7. Isotopic Abundance
5. Immunological Techniques
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Fresch, F.; Daoudi, J. Pignons de pin et Dysgueusie Retardée; Rapport Final; Comité de Coordination de Toxicovigilance (CCTV): Paris, France, 2010. [Google Scholar]
- Moore, J.C.; Spink, J.; Lipp, M. Development and Application of a Database of Food Ingredient Fraud and Economically Motivated Adulteration from 1980 to 2010. J. Food Sci. 2012, 77. [Google Scholar] [CrossRef] [PubMed]
- Bonnier, G.; de Layens, G. Flore complète portative de la France, de la suisse et de la Belgique; Belin: Paris, France, 1909. [Google Scholar]
- Villa, C.; Costa, J.; Oliveira, M.B.P.P.; Mafra, I. Novel quantitative real-time PCR approach to determine safflower (Carthamus tinctorius) adulteration in saffron (Crocus sativus). Food Chem. 2017, 229, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Sasikumar, B.; Syamkumar, S.; Remya, R.; Zachariah, T.J. PCR based detection of adulteration in the market samples of turmeric powder. Food Biotechnol. 2004, 18, 299–306. [Google Scholar] [CrossRef]
- Vietina, M.; Agrimonti, C.; Marmiroli, N. Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: A tool for disclosure of olive oil adulteration. Food Chem. 2013, 141, 3820–3826. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Baik, S.H. Molecular Identification of Economically Motivated Adulteration of Red Pepper Powder by Species-Specific PCR of Nuclear rDNA-ITS Regions in Garlic and Onion. Food Anal. Methods 2016, 9, 3287–3297. [Google Scholar] [CrossRef]
- Moretti, A.; Susca, A. Mycotoxigenic Fungi: Methods and Protocols, 1st ed.; Humana Press: New York, NY, USA, 2017. [Google Scholar]
- Van Ooijen, J.W.; Sandbrink, J.M.; Vrielink, M.; Verkerk, R.; Zabel, P.; Lindhout, P. An RFLP linkage map of Lycopersicon peruvianum. Theor. Appl. Genet. 1994, 89, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.; Wall, R. The use of random amplified polymorphic DNA (RAPD) analysis for studies of genetic variation in populations of the blowfly Lucilia sericata (Diptera: Calliphoridae) in southern England. Bull. Entomol. Res. 1995, 85, 549–555. [Google Scholar] [CrossRef]
- Rao, S.B.; Rathi, A.; Gothalwal, R.; Atkinson, H.; Rao, U. A comparison of the variation in Indian populations of pigeonpea cyst nematode, Heterodera cajani revealed by morphometric and AFLP analysis. Zookeys 2011, 135, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Andreakis, N.; Giordano, I.; Pentangelo, A.; Fogliano, V.; Graziani, G.; Monti, L.M.; Rao, R. DNA fingerprinting and quality traits of Corbarino cherry-like tomato landraces. J. Agric. Food Chem. 2004, 52, 3366–3371. [Google Scholar] [CrossRef] [PubMed]
- Smulders, M.J.M.; Bredemeijer, G.; Rus-Kortekaas, W.; Arens, P.; Vosman, B. Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor. Appl. Genet. 1997, 94, 264–272. [Google Scholar] [CrossRef]
- Liu, S.; Gao, P.; Zhu, Q.; Luan, F.; Davis, A.R.; Wang, X. Development of cleaved amplified polymorphic sequence markers and a CAPS-based genetic linkage map in watermelon (Citrullus lanatus [Thunb.] Matsum. and Nakai) constructed using whole-genome re-sequencing data. Breed. Sci. 2016, 66, 244–259. [Google Scholar] [CrossRef] [PubMed]
- Fulton, T.M. Identification, Analysis, and Utilization of Conserved Ortholog Set Markers for Comparative Genomics in Higher Plants. Plant Cell Online 2002, 14, 1457–1467. [Google Scholar] [CrossRef]
- Labate, J.A.; Baldo, A.M. Tomato SNP discovery by EST mining and resequencing. Mol. Breed. 2005, 16, 343–349. [Google Scholar] [CrossRef]
- Lü, Y.; Cui, X.; Li, R.; Huang, P.; Zong, J.; Yao, D.; Li, G.; Zhang, D.; Yuan, Z. Development of genome-wide insertion/deletion markers in rice based on graphic pipeline platform. J. Integr. Plant Biol. 2015, 57, 980–991. [Google Scholar] [CrossRef] [PubMed]
- Paran, I.; Michelmore, R.W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 1993, 85, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 2004, 5, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Gupta, V.K.; Misra, A.K.; Modi, D.R.; Pandey, B.K. Potential of Molecular Markers in Plant Biotechnology. Plant Omics 2009, 2, 141–162. [Google Scholar]
- Wang, J.; Ha, W.-Y.; Ngan, F.-N.; But, P.P.-H.; Shaw, P.-C. Application of Sequence Characterized Amplifies Region (SCAR) analysis to authenticate Panax species and thier adulterants. Planta Med. 2001, 67, 781–783. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Barcode of Life “Identifiying Species with DNA Barcoding”. Available online: http://www.barcodeoflife.org (accessed on 30 March 2018).
- CBOL Plant Working Group. A DNA barcode for land plants. PNAS, 2009; 106, 12794–12797. [Google Scholar]
- Bruni, I.; de Mattia, F.; Galimberti, A.; Galasso, G.; Banfi, E.; Casiraghi, M.; Labra, M. Identification of poisonous plants by DNA barcoding approach. Int. J. Legal Med. 2010, 124, 595–603. [Google Scholar] [CrossRef] [PubMed]
- De Mattia, F.; Bruni, I.; Galimberti, A.; Cattaneo, F.; Casiraghi, M.; Labra, M. A comparative study of different DNA barcoding markers for the identification of some members of Lamiacaea. Food Res. Int. 2011, 44, 693–702. [Google Scholar] [CrossRef]
- Min, X.J.; Hickey, D.A. Assessing the effect of varying sequence length on DNA barcoding of fungi: Barcoding. Mol. Ecol. Notes 2007, 7, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Vogel, R.F.; Niessen, L. Development and application of a loop-mediated isothermal amplification assay for rapid identification of aflatoxigenic molds and their detection in food samples. Int. J. Food Microbiol. 2012, 159, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Chaumpluk, P.; Plubcharoensook, P.; Prasongsuk, S. Rapid detection of aflatoxigenic Aspergillus sp. in herbal specimens by a simple, bendable, paper-based lab-on-a-chip. Biotechnol. J. 2016, 11, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Lacina, O.; Zachariasova, M.; Urbanova, J.; Vaclavikova, M.; Cajka, T.; Hajslova, J. Critical assessment of extraction methods for the simultaneous determination of pesticide residues and mycotoxins in fruits, cereals, spices and oil seeds employing ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2012, 1262, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Danezis, G.P.; Anagnostopoulos, C.J.; Liapis, K.; Koupparis, M.A. Multi-residue analysis of pesticides, plant hormones, veterinary drugs and mycotoxins using HILIC chromatography—MS/MS in various food matrices. Anal. Chim. Acta 2016, 942, 121–138. [Google Scholar] [CrossRef] [PubMed]
- Destaillats, F.; Cruz-Hernandez, C.; Giuffrida, F.; Dionisi, F. Identification of the botanical origin of pine nuts found in food products by gas-liquid chromatography analysis of fatty acid profile. J. Agric. Food Chem. 2010, 58, 2082–2087. [Google Scholar] [CrossRef] [PubMed]
- Ogrinc, N.; Košir, I.J.; Spangenberg, J.E.; Kidrič, J. The application of NMR and MS methods for detection of adulteration of wine, fruit juices, and olive oil. A review. Anal. Bioanal. Chem. 2003, 376, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Mirghani, M.E.S.; Che Man, Y.B. A new method for determining gossypol in cottonseed oil by FTIR spectroscopy. J. Am. Oil Chem. Soc. 2003, 80, 625–628. [Google Scholar] [CrossRef]
- O’Leary, M.H. Carbon Isotopes in Photosynthesis. Bioscience 1988, 38, 328–336. [Google Scholar] [CrossRef]
- Raco, B.; Dotsika, E.; Poutoukis, D.; Battaglini, R.; Chantzi, P. O-H-C isotope ratio determination in wine in order to be used as a fingerprint of its regional origin. Food Chem. 2015, 168, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Cotte, J.F.; Casabianca, H.; Lhéritier, J.; Perrucchietti, C.; Sanglar, C.; Waton, H.; Grenier-Loustalot, M.F. Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey. Anal. Chim. Acta 2007, 582, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Dordai, E.; Magdas, D.A.; Cuna, S.M.; Cristea, G.; Futó, I.; Vodila, G.; Mirela, V. Detection of some Romanian honey types adulteration using stable isotope methodology. Stud. Univ. Babes-Bolyai Chem. 2011, 56, 157–163. [Google Scholar]
- Xue, C.Y.; Xue, H.G.; Li, D.Z. Authentication of the traditional Chinese medicinal plant Saussurea involucrate using enzyme-linked immunosorbent assay (ELISA). Planta Med. 2009, 75, PG15. [Google Scholar] [CrossRef]
- The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408, 796–815. [Google Scholar]
- Ansel, J.-L.; Moretti, C.; Raharivelomanana, P.; Hano, C. Cosmetopoeia. C. R. Chim. 2016, 19. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drouet, S.; Garros, L.; Hano, C.; Tungmunnithum, D.; Renouard, S.; Hagège, D.; Maunit, B.; Lainé, É. A Critical View of Different Botanical, Molecular, and Chemical Techniques Used in Authentication of Plant Materials for Cosmetic Applications. Cosmetics 2018, 5, 30. https://doi.org/10.3390/cosmetics5020030
Drouet S, Garros L, Hano C, Tungmunnithum D, Renouard S, Hagège D, Maunit B, Lainé É. A Critical View of Different Botanical, Molecular, and Chemical Techniques Used in Authentication of Plant Materials for Cosmetic Applications. Cosmetics. 2018; 5(2):30. https://doi.org/10.3390/cosmetics5020030
Chicago/Turabian StyleDrouet, Samantha, Laurine Garros, Christophe Hano, Duangjai Tungmunnithum, Sullivan Renouard, Daniel Hagège, Benoit Maunit, and Éric Lainé. 2018. "A Critical View of Different Botanical, Molecular, and Chemical Techniques Used in Authentication of Plant Materials for Cosmetic Applications" Cosmetics 5, no. 2: 30. https://doi.org/10.3390/cosmetics5020030
APA StyleDrouet, S., Garros, L., Hano, C., Tungmunnithum, D., Renouard, S., Hagège, D., Maunit, B., & Lainé, É. (2018). A Critical View of Different Botanical, Molecular, and Chemical Techniques Used in Authentication of Plant Materials for Cosmetic Applications. Cosmetics, 5(2), 30. https://doi.org/10.3390/cosmetics5020030