Skin Regenerative and Anti-Cancer Actions of Copper Peptides
Abstract
:1. Introduction
2. Regenerative and Anti-Cancer Actions of Copper Peptides
3. GHK May Support DNA Repair
4. Anti-Inflammatory Actions of GHK-Cu
5. Anti-Oxidant Actions of GHK-Cu
6. Anti-Cancer Copper-Peptides from Enzymatic Degradation of Proteins
7. Conclusions
Conflicts of Interest
References
- Pickart, L. Tissue Protective and Regenerative Compositions. U.S. Patent 5,888,522, 30 March 1999. [Google Scholar]
- Gorouhi, F.; Maibach, H.I. Role of topical peptides in preventing and treating aged skin. Int. J. Cosmet. Sci. 2009, 31, 327–345. [Google Scholar] [CrossRef] [PubMed]
- Pickart, L.; Margolina, A. Anti-Aging Activity of the GHK Peptide—The skin and beyond. J. Aging. Res. Clin. Pract. 2012, 1, 13–16. [Google Scholar]
- Finkley, M.B.; Appa, Y.; Bhandarkar, S. Copper Peptide and Skin. In Cosmeceuticals and Active Cosmetics: Drugs vs. Cosmetics; Elsner, P., Maibach, H.I., Eds.; Marcel Dekker: New York, NY, USA, 2005; pp. 549–563. [Google Scholar]
- Pickart, L. The human tri-peptide GHK and tissue remodeling. J. Biomater. Sci. Polym. Ed. 2008, 19, 969–988. [Google Scholar] [CrossRef] [PubMed]
- Pickart, L. A Tripeptide from Human Serum Which Enhances the Growth of Neoplastic Hepatocytes and the Survival of Normal Hepatocytes. Ph.D. Thesis, University of California, San Francisco, CA, USA, 1973. [Google Scholar]
- Pickart, L.; Vasquez-Soltero, J.M.; Margolina, A. Resetting Skin Genome Back to Health Naturally with GHK. In Textbook of Aging Skin; Farage, M.A., Miller, K.W., Maibach, H.I., Eds.; Springer: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Pickart, L.; Vasquez-Soltero, J.; Margolina, A. The Effect of the Human Peptide GHK on Gene Expression Relevant to Nervous System Function and Cognitive Decline. Brain Sci. 2017, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Pickart, L.; Freedman, J.H.; Loker, W.J.; Peisach, J.; Perkins, C.M.; Stenkamp, R.E.; Weinstein, B. Growth-modulating plasma tripeptide may function by facilitating copper uptake into cells. Nature 1980, 288, 715–717. [Google Scholar] [CrossRef] [PubMed]
- Peled, T.; Fibach, E.; Treves, A. Methods of Controlling Proliferation and Differentiation of Stem and Progenitor Cells. U.S. Patent 6,962,698, 8 November 2005. [Google Scholar]
- Campbell, J.D.; McDonough, J.E.; Zeskind, J.E.; Hackett, T.L.; Pechkovsky, D.V.; Brandsma, C.A.; Suzuki, M.; Gosselink, J.V.; Liu, G.; Alekseyev, Y.O.; et al. A gene expression signature of emphysema-related lung destruction and its reversal by the tripeptide GHK. Genome Med. 2012, 4, 67. [Google Scholar] [CrossRef] [PubMed]
- Pickart, L.; Vasquez-Soltero, J.M.; Margolina, A. GHK and DNA: Resetting the human genome to health. Biomed. Res. Int. 2014, 2014, 151479. [Google Scholar] [CrossRef] [PubMed]
- Pickart, L.; Vasquez-Soltero, J.M.; Margolina, A. GHK Peptide as a Natural Modulator of Multiple Cellular Pathways in Skin Regeneration. Biomed Res. Int. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- McMurry, R.; Perdomo, C.; Liu, G.; Zhang, S.; Stevenson, C.; Campbell, J.; Spira, A.; Lenburg, M. GHK-Cu Elicits in vitro, Dose-Dependent Transcriptional Alterations in Pathways Relevant to Extracellular Matrix Composition. Am. Thorac. Soc. 2017, A73, A2446. [Google Scholar]
- Szarcvel Szic, K.; Declerck, K.; Vidaković, M.; Vanden Berghe, W. From inflammaging to healthy aging by dietary lifestyle choices: Is epigenetics the key to personalized nutrition? Clin. Epigenetics 2015, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Kaliman, P.; Alvarez-López, M.J.; Cosín-Tomás, M.; Rosenkranz, M.A.; Lutz, A.; Davidson, R.J. Rapid changes in histone deaconesses and inflammatory gene expression in expert meditators. Psychoneuroendocrinology 2014, 40, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Devarajan, E.; Song, Y.H.; Krishnappa, S.; Alt, E. Epithelial-mesenchymal transition in breast cancer lines is mediated through PDGF-D released by tissue-resident stem cells. Int. J. Cancer 2012, 131, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, A.A.; Siddik, Z.H. Platelet-derived growth factor (PDGF) signaling in cancer: Rapidly emerging signalling landscape. Cell Biochem. Funct. 2015, 33, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Fabregat, I.; Fernando, J.; Mainez, J.; Sancho, P. TGF-beta signaling in cancer treatment. Curr. Pharm. Des. 2014, 20, 2934–2947. [Google Scholar] [CrossRef] [PubMed]
- Zarzynska, J.M. Two faces of TGF-beta1 in breast cancer. Mediat. Inflamm. 2014, 141747. [Google Scholar] [CrossRef] [PubMed]
- Kimoto, E.; Tanaka, H.; Gyotoku, J.; Morishige, F.; Pauling, L. Enhancement of antitumor activity of ascorbate against Ehrlich ascites tumor cells by the copper: Glycylglycylhistidine complex. Cancer Res. 1983, 43, 824–828. [Google Scholar] [PubMed]
- Hong, Y.; Downey, T.; Eu, K.W.; Koh, P.K.; Cheah, P.Y. A “metastasis-prone” signature for early-stage mismatch-repair proficient sporadic colorectal cancer patients and its implications for possible therapeutics. Clin. Exp. Metastasis 2010, 27, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Matalka, L.E.; Ford, A.; Unlap, M.T. The Tripeptide, GHK, Induces Programmed Cell Death in SH-SY5Y Neuroblastoma Cells. J. Biotechnol. Biomater. 2012, 2, 144. [Google Scholar] [CrossRef]
- Pickart, L.; Vasquez-Soltero, J.M.; Pickart, F.; Majnarich, J.D. GHK, the human skin remodeling peptide, induces anti-cancer expression of numerous caspase, growth regulatory, and DNA repair genes. J. Anal. Oncol. 2014, 3, 79–87. [Google Scholar] [CrossRef]
- Sollberger, G.; Strittmatter, G.E.; Grossi, S.; Garstkiewicz, M.; Auf dem Keller, U.; French, L.E.; Beer, H.D. Caspase-1 activity is required for UVB-induced apoptosis of human keratinocytes. J. Invest. Dermatol. 2015, 135, 1395–1404. [Google Scholar] [CrossRef] [PubMed]
- Awad, F.; Assrawi, E.; Louvrier, C.; Jumeau, C.; Giurgea, I.; Amselem, S.; Karabina, S.A. Photoaging and skin cancer: Is the inflammasome the missing link? Mech. Ageing Dev. 2018. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chung, H.J.; Vogt, M.; Jin, Y.; Malide, D.; He, L.; Dundr, M.; Levens, D. JTV1 co-activates FBP to induce USP29 transcription and stabilize p53 in response to oxidative stress. EMBO J. 2011, 30, 846–858. [Google Scholar] [CrossRef] [PubMed]
- Machiraju, D.; Moll, I.; Gebhardt, C.; Sucker, A.; Buder-Bakhaya, K.; Schadendorf, D.; Hassel, J.C. STAT5 expression correlates with recurrence and survival in melanoma patients treated with interferon-α. Melanoma Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Boldrini, L.; Loggini, B.; Gisfredi, S.; Zucconi, Y.; Baldinotti, F.; Fogli, A.; Simi, P.; Cervadoro, G.; Barachini, P.; Basolo, F.; et al. Mutations of Fas (APO-1/CD95) and p53 genes in nonmelanoma skin cancer. J. Cutan. Med. Surg. 2003, 7, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Kang, T.H. Transcriptional and Posttranslational Regulation of Nucleotide Excision Repair: The Guardian of the Genome against Ultraviolet Radiation. Int. J. Mol. Sci. 2016, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Kabir, Y.; Seidel, R.; Mcknight, B.; Moy, R. DNA repair enzymes: An important role in skin cancer prevention and reversal of photodamage—A review of the literature. J. Drugs Dermatol. 2015, 14, 297–303. [Google Scholar] [PubMed]
- Pollard, J.D.; Quan, S.; Kang, T.; Koch, R.J. Effects of copper tripeptide on the growth and expression of growth factors by normal and irradiated fibroblasts. Arch. Facial Plast. Surg. 2005, 7, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.M.; Wang, G.L.; Wang, X.B.; Liu, L.; Zhang, Q.; Yin, Y.; Wang, Q.Y.; Kang, J.; Hou, G. GHK Peptide Inhibits Bleomycin-Induced Pulmonary Fibrosis in Mice by Suppressing TGFβ1/Smad-Mediated Epithelial-to-Mesenchymal Transition. Front. Pharmacol. 2017, 8, 904. [Google Scholar] [CrossRef] [PubMed]
- Gruchlik, A.; Chodurek, E.; Dzierzewicz, Z. Effect of GLY-HIS-LYS and its copper complex on TGF-β secretion in normal human dermal fibroblasts. Acta Pol. Pharm. 2014, 71, 954–958. [Google Scholar] [PubMed]
- Gruchlik, A.; Jurzak, M.; Chodurek, E.; Dzierzewicz, Z. Effect of Gly-Gly-His, Gly-His-Lys and their copper complexes on TNF-alpha-dependent IL-6 secretion in normal human dermal fibroblasts. Acta Pol. Pharm. 2012, 69, 1303–1306. [Google Scholar] [PubMed]
- Park, J.R.; Lee, H.; Kim, S.I.; Yang, S.R. The tri-peptide GHK-Cu complex ameliorates lipopolysaccharide-induced acute lung injury in mice. Oncotarget 2016, 7, 58405–58417. [Google Scholar] [CrossRef] [PubMed]
- Beretta, G.; Arlandini, E.; Artali, R.; Anton, J.M.; Maffei Facino, R. Acrolein sequestering ability of the endogenous tripeptide glycyl-histidyl-lysine (GHK): Characterization of conjugation products by ESI-MSn and theoretical calculations. J. Pharm. Biomed. Anal. 2008, 47, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Beretta, G.; Artali, R.; Regazzoni, L.; Panigati, M.; Facino, R.M. Glycyl-histidyl-lysine (GHK) is a quencher of alpha,beta-4-hydroxy-trans-2-nonenal: A comparison with carnosine. Insights into the mechanism of reaction by electrospray ionization mass spectrometry, 1H NMR, and computational techniques. Chem. Res. Toxicol. 2007, 20, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Cebrian, J.; Messeguer, A.; Facino, R.M.; Garcia Anton, J.M. New anti-RNS and -RCS products for cosmetic treatment. Int. J. Cosmet. Sci. 2005, 27, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.E. The influence of medium components on Cu(2+)-dependent oxidation of low-density lipoproteins and its sensitivity to superoxide dismutase. Biochim. Biophys. Acta 1992, 1128, 50–57. [Google Scholar] [CrossRef]
- Miller, D.M.; DeSilva, D.; Pickart, L.; Aust, S.D. Effects of glycyl-histidyl-lysyl chelated Cu(II) on ferritin dependent lipid peroxidation. Adv. Exp. Med. Biol. 1990, 264, 79–84. [Google Scholar] [PubMed]
- Smakhtin, M.; Konoplia, A.I.; Sever’ianova, L.A.; Shveinov, I.A. Pharmacological correction of immuno-metabolic disorders with the peptide Gly-His-Lys in hepatic damage induced by tetrachloromethane. Patol. Fiziol. Eksp. Ter. 2003, 2, 19–21. [Google Scholar]
- Cherdakov, V.Y.; Smakhtin, M.Y.; Dubrovin, G.M.; Dudka, V.T.; Bobyntsev, I.I. Synergetic antioxidant and reparative action of thymogen, dalargin and peptide Gly-His-Lys in tubular bone fractures. Exp. Biol. Med. 2010, 4, 15–20. [Google Scholar]
- Gul, N.Y.; Topal, A.; Cangul, I.T.; Yanik, K. The effects of topical tripeptide copper complex and helium-neon laser on wound healing in rabbits. Vet. Dermatol. 2008, 19, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Arul, V.; Gopinath, D.; Gomathi, K.; Jayakumar, R. Biotinylated GHK peptide incorporated collagenous matrix: A novel biomaterial for dermal wound healing in rats. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 73, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Arul, V.; Kartha, R.; Jayakumar, R.A. therapeutic approach for diabetic wound healing using biotinylated GHK incorporated collagen matrices. Life Sci. 2007, 80, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, S.; Saez, B.; Mukhopadhyay, S.; Ding, D.; Ahmed, A.M.; Chen, X.; Pucci, F.; Yamin, R.; Wang, J.; Pittet, M.J.; et al. Tle1 tumor suppressor negatively regulates inflammation in vivo and modulates NF-κB inflammatory pathway. Proc. Natl. Acad. Sci. USA 2016, 113, 1871–1876. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yang, J.; Li, D.; Guo, Z. Overexpression of uric acid transporter SLC2A9 inhibits proliferation of hepatocellular carcinoma cells. Oncol. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Pickart, L.R.; Pickart, F.D. Non-Toxic Skin Cancer Therapy with Copper Peptides. U.S. Patent 9,586,989, 7 March 2017. [Google Scholar]
- Li, P.; Nielsen, H.M.; Mullertz, A. Oral delivery of peptides and proteins using lipid-based drug delivery systems. Expert Opin. Drug Deliv. 2012, 9, 1289–1304. [Google Scholar] [CrossRef] [PubMed]
Percentage of Change | Genes Stimulated | Genes Suppressed |
---|---|---|
50–99% | 1569 | 583 |
100–199% | 646 | 469 |
200–299% | 227 | 196 |
300–599% | 196 | 207 |
600–899% | 39 | 47 |
900–1199% | 8 | 7 |
1200% or more | 2 | 4 |
Gene | Percent Change in Gene Expression | Comment |
---|---|---|
CASP 1 | 432 | Caspase 1 induces apoptosis in human keratinocytes after UV-radiation. Plays a protective role against UV-induced skin cancer [25]. |
CASP 8 | 399 | Caspase 8. A member of the caspase family, involved in programmed cell death. |
CASP 10 | 195 | Caspase 10. Cleaves and activates caspases 3 and 7. Processed by caspase 8. |
NLRP1 | 249 | A member of Ced-4 family of apoptosis proteins. A key mediator of apoptosis and a member of inflammasomes protein family. Mutations in this gene increase skin susceptibility to UV-induced skin cancer [26]. |
CARD10 | 173 | Caspase recruitment domain. |
Gene | Percent Change in Gene Expression | Comment |
---|---|---|
USP 29 | 1056 | Ubiquitin specific peptidase 29. Cleaves polyubiquitin chain from p53 and stabilizes it, causing a quick accumulation of p53 [27]. |
IFNA 21 | 955 | A member of alpha-interferon gene cluster. May increase apoptosis in melanoma cell lines. |
TP73 | 938 | A member of p53 family of transcriptional factors. Mutations are often observed in melanomas. |
IL25 | 891 | Interleukin 25. |
IL15 | 875 | Interleukin 15. |
ING2 | 337 | Inhibitor of growth family protein. Involved in tissue regeneration. |
PTEN | 165 | Phosphatase and tensin homolog. A cancer suppressor gene. Frequently mutated in cancers, including cutaneous melanoma. |
NRG1 | 164 | Neuroregulin. Mutations in this gene are linked to cancer. |
ATM | 107 | ATM serine/threonine kinase—a checkpoint protein. |
DCN * | 44 | Decorin. Plays role in collagen fibril assembly and tumor suppression. In rat wound chamber experiments, GHK increased mRNA for decorin 302%. |
ITGB4 | 609 | Integrin subunit beta 4. A receptor for laminin. Deletions of this gene lead to increased tumor growth. |
BRCA 1 * | 44 | DNA repair associated protein. Cancer suppressor. |
Gene | Percent Change in Gene Expression | Comment |
---|---|---|
ABCB1 | −1537 | ATP binding subfamily B member 1. Increases drug resistance in cancer cells. |
STAT5 | −982 | A member of the STAT family of transcriptional factors. Increases resistance of melanoma cells to interferon treatment [28]. |
FGFR2 | −904 | Fibroblasts growth factor receptor family. FGFR2 inhibitors reduce growth of melanomas. |
FAIM2 | −749 | Fas apoptotic inhibitory molecule 2. Prevents apoptosis. Mutations in FAS system are common in many non-melanoma skin cancers [29]. |
Gene | Percent Change in Gene Expression | Comments |
---|---|---|
PARP3 | 253 | Poly (ADP-ribose) polymerase family, member 3. DNA repair, regulation of apoptosis, genomic stability. |
POLM | 225 | DNA polymerase mu. DNA repair enzyme. |
RAD50 | 175 | Double strand break repair protein. DNA repair, cell cycle checkpoint activation. |
RARA | 123 | retinoic acid receptor alpha. |
GENES | Percent Change in Gene Expression | Comment |
---|---|---|
TLE1 | 762 | Transducin like enhancer of split 1. Tumor suppressor. Reduces inflammation and modulates NF-kb pathway. Considered to have a potential in cancer therapy [48]. |
SPRR2C | 721 | Proline-rich small protein. Its expression increases in keratinocytes after UV-radiation. |
APOM | 403 | Apolipoprotein. Binds oxidized phospholipids and increases the antioxidant effect of HDL. |
PON3 | 319 | Paraoxonase 3. Inhibits oxidation of HDL. |
IL18BP | 295 | Interleukin 18 binding protein. An antagonist of a highly inflammatory protein IL 18. |
HEPH | 217 | Hephaestin. Regulates iron and copper transport. Prevents oxidative damage. |
GPSM3 | 193 | G protein signaling modulator 3. Expressed in leukocytes and lymph organs. |
FABP1 | 186 | Fatty acids binding protein 1. Plays role in fatty acids metabolism. Reduces intracellular ROS level from oxidation of fatty acids. |
MT3 | 142 | Metallothionein 3. A member of metallothionein family. Binds bivalent metal ions, such as copper 2+. Plays an important role in copper homeostasis. |
PTGS2 | 120 | Prostaglandin-endoperoxide synthase 2. Acts as a peroxidase. |
SLC2A9 | 117 | Solute carrier family 2 member 9, involved in glucose homeostasis. Upregulation reduces ROS accumulation [49]. |
IL17A | −1018 | Interleukin 17 A, a proinflammatory cytokine. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pickart, L.; Margolina, A. Skin Regenerative and Anti-Cancer Actions of Copper Peptides. Cosmetics 2018, 5, 29. https://doi.org/10.3390/cosmetics5020029
Pickart L, Margolina A. Skin Regenerative and Anti-Cancer Actions of Copper Peptides. Cosmetics. 2018; 5(2):29. https://doi.org/10.3390/cosmetics5020029
Chicago/Turabian StylePickart, Loren, and Anna Margolina. 2018. "Skin Regenerative and Anti-Cancer Actions of Copper Peptides" Cosmetics 5, no. 2: 29. https://doi.org/10.3390/cosmetics5020029
APA StylePickart, L., & Margolina, A. (2018). Skin Regenerative and Anti-Cancer Actions of Copper Peptides. Cosmetics, 5(2), 29. https://doi.org/10.3390/cosmetics5020029