Cosmetics 2017, 4(3), 33; https://doi.org/10.3390/cosmetics4030033
Water-Soluble Organic Germanium Promotes Both Cornified Cell Envelope Formation and Ceramide Synthesis in Cultured Keratinocytes
1
Bionics Program, Tokyo University of Technology Graduate School, 1404-1 Katakuramachi, Hachioji City, Tokyo 192-0982, Japan
2
School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji City, Tokyo 192-0982, Japan
*
Author to whom correspondence should be addressed.
Received: 29 July 2017 / Revised: 21 August 2017 / Accepted: 6 September 2017 / Published: 9 September 2017
Abstract
We investigated whether 3-(trihydroxygermyl) propionic acid increases the formation of cornified cell envelopes and the level of ceramide in cultured epidermal keratinocytes and in a three-dimensional human epidermis model. The activity and mRNA expression of transglutaminase were increased when 3-(trihydroxygermyl) propionic acid was added to the cell cultures. The formation of cornified cell envelopes in cultured human epidermal keratinocytes was increased in the presence of 3-(trihydroxygermyl) propionic acid. Ceramide levels were increased in the presence of 3-(trihydroxygermyl) propionic acid. The activity of serine palmitoyltransferase and mRNA levels of serine palmitoyltransferase 2 were also increased when 3-(trihydroxygermyl) propionic acid was added to the cultures. The extent to which ceramide levels were increased in the presence of 3-(trihydroxygermyl) propionic acid appeared dependent on serine palmitoyltransferase 2 upregulation. These results suggest that 3-(trihydroxygermyl) propionic acid can promote cornified cell envelope formation by inducing transglutaminase expression and ceramide synthesis via the induction of serine palmitoyltransferase activity, thereby improving the barrier function and moisture of dry, rough skin. View Full-TextKeywords:
barrier function; ceramide; keratinization; organic germanium; transglutaminase
▼
Figures
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article
MDPI and ACS Style
Kato, M.; Zeng, H.; Gu, L.; Maeda, K. Water-Soluble Organic Germanium Promotes Both Cornified Cell Envelope Formation and Ceramide Synthesis in Cultured Keratinocytes. Cosmetics 2017, 4, 33.
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.
Article Metrics
Comments
[Return to top]
Cosmetics
EISSN 2079-9284
Published by MDPI AG, Basel, Switzerland
RSS
E-Mail Table of Contents Alert