Anti-Inflammatory and Antioxidant Properties of Anti-UV Creams Enriched with Natural Extracts from Avocado, Apple, and Kiwi By-Products, with and Without Nanobubbles
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials, Reagents, and Instruments
2.2. Cosmetic Formulations
2.3. Total Antioxidant Activity (TAA)
2.4. Measurement of Sun Protection—SPF Calculation
2.5. ATR-FTIR Analysis
2.6. Antiplatelet and Anti-Inflammatory Properties
2.7. Statistical Analysis
2.8. Molecular Docking Process
2.8.1. Ligand Preparation
2.8.2. Protein Target Selection
2.8.3. Molecular Docking of Ligands with the Protein Receptor
3. Results and Discussion
3.1. Antioxidant Activity Results
3.1.1. Antioxidant Capacity According to the DPPH Assay
3.1.2. Antioxidant Capacity According to the FRAP Assay
3.2. Measurement of Sun Protection Action—SPF Calculation
3.3. ATR-FTIR Analysis of Cosmetic Creams on Synthetic Membrane
3.4. Evaluation of Antiplatelet and Anti-Inflammatory Properties
3.5. Results of Molecular Docking Analysis
3.5.1. Docking of Phloretin with PAFR
3.5.2. Docking of Rutin with PAFR
3.5.3. Docking of Quercetin with PAFR
3.6. Organoleptic Properties and Stability
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsiapali, O.I.; Ayfantopoulou, E.; Tzourouni, A.; Ofrydopoulou, A.; Letsiou, S.; Tsoupras, A. Unveiling the Utilization of Grape and Winery By-Products in Cosmetics with Health Promoting Properties. Appl. Sci. 2025, 15, 1007. [Google Scholar] [CrossRef]
- Tsoupras, A. The Anti-Inflammatory and Antithrombotic Properties of Bioactives from Orange, Sanguine and Clementine Juices and from Their Remaining By-Products. Beverages 2022, 8, 39. [Google Scholar] [CrossRef]
- Marra, A.; Manousakis, V.; Zervas, G.P.; Koutis, N.; Finos, M.A.; Adamantidi, T.; Panoutsopoulou, E.; Ofrydopoulou, A.; Tsoupras, A. Avocado and Its By-Products as Natural Sources of Valuable Anti-Inflammatory and Antioxidant Bioactives for Functional Foods and Cosmetics with Health-Promoting Properties. Appl. Sci. 2024, 14, 5978. [Google Scholar] [CrossRef]
- Marra, A.; Manousakis, V.; Koutis, N.; Zervas, G.P.; Ofrydopoulou, A.; Shiels, K.; Saha, S.K.; Tsoupras, A. In Vitro Antioxidant, Antithrombotic and Anti-Inflammatory Activities of the Amphiphilic Bioactives Extracted from Avocado and Its By-Products. Antioxidants 2025, 14, 146. [Google Scholar] [CrossRef]
- Vandorou, M.; Plakidis, C.; Tsompanidou, I.M.; Ofrydopoulou, A.; Shiels, K.; Saha, S.K.; Tsoupras, A. In Vitro Antioxidant, Antithrombotic and Anti-Inflammatory Properties of the Amphiphilic Bioactives from Greek Organic Starking Apple Juice and Its By-Products (Apple Pomace). Appl. Sci. 2025, 15, 2807. [Google Scholar] [CrossRef]
- Papadopoulou, D.; Chrysikopoulou, V.; Rampaouni, A.; Plakidis, C.; Ofrydopoulou, A.; Shiels, K.; Saha, S.K.; Tsoupras, A. Antioxidant, Antithrombotic and Anti-Inflammatory Properties of Amphiphilic Bioactives from Water Kefir Grains and Its Apple Pomace-Based Fermented Beverage. Antioxidants 2025, 14, 164. [Google Scholar] [CrossRef] [PubMed]
- Moysidou, A.M.; Cheimpeloglou, K.; Koutra, S.I.; Finos, M.A.; Ofrydopoulou, A.; Tsoupras, A. A Comprehensive Review on the Antioxidant and Anti-Inflammatory Bioactives of Kiwi and Its By-Products for Functional Foods and Cosmetics with Health-Promoting Properties. Appl. Sci. 2024, 14, 5990. [Google Scholar] [CrossRef]
- Moysidou, A.M.; Cheimpeloglou, K.; Koutra, S.I.; Manousakis, V.; Ofrydopoulou, A.; Shiels, K.; Saha, S.K.; Tsoupras, A. In Vitro Antioxidant, Antithrombotic and Anti-Inflammatory Activities of Bioactive Metabolites Extracted from Kiwi and Its By-Products. Metabolites 2025, 15, 400. [Google Scholar] [CrossRef]
- Kontaxi, N.-I.; Panoutsopoulou, E.; Ofrydopolou, A.; Tsoupras, A. Anti-Inflammatory Benefits of Grape Pomace and Tomato Bioactives as Ingredients in Sun Oils against UV Radiation for Skin Protection. Appl. Sci. 2024, 14, 6236. [Google Scholar] [CrossRef]
- Machado, M.; Silva, S.; Costa, E.M. Byproducts as a Sustainable Source of Cosmetic Ingredients. Appl. Sci. 2024, 14, 10241. [Google Scholar] [CrossRef]
- Makris, D.P. Beverage Industry By-Products as Bio-Resources of Functional Compounds. Beverages 2023, 9, 48. [Google Scholar] [CrossRef]
- Tu, Y.; Quan, T. Oxidative Stress and Human Skin Connective Tissue Aging. Cosmetics 2016, 3, 28. [Google Scholar] [CrossRef]
- Brudzyńska, P.; Kurzawa, M.; Sionkowska, A.; Grisel, M. Antioxidant Activity of Plant-Derived Colorants for Potential Cosmetic Application. Cosmetics 2022, 9, 81. [Google Scholar] [CrossRef]
- Torres-Contreras, A.M.; Garcia-Baeza, A.; Vidal-Limon, H.R.; Balderas-Renteria, I.; Ramírez-Cabrera, M.A.; Ramirez-Estrada, K. Plant Secondary Metabolites against Skin Photodamage: Mexican Plants, a Potential Source of UV-Radiation Protectant Molecules. Plants 2022, 11, 220. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-M.; Cheng, M.-Y.; Xun, M.-H.; Zhao, Z.-W.; Zhang, Y.; Tang, W.; Cheng, J.; Ni, J.; Wang, W. Possible Mechanisms of Oxidative Stress-Induced Skin Cellular Senescence, Inflammation, and Cancer and the Therapeutic Potential of Plant Polyphenols. Int. J. Mol. Sci. 2023, 24, 3755. [Google Scholar] [CrossRef] [PubMed]
- Tsoupras, A.; Adamantidi, T.; Finos, M.A.; Philippopoulos, A.; Detopoulou, P.; Tsopoki, I.; Kynatidou, M.; Demopoulos, C.A. Re-Assessing the Role of Platelet Activating Factor and Its Inflammatory Signaling and Inhibitors in Cancer and Anti-Cancer Strategies. Front. Biosci. (Landmark Ed) 2024, 29, 345. [Google Scholar] [CrossRef]
- Habachi, E.; Rebey, I.B.; Dakhlaoui, S.; Hammami, M.; Sawsen, S.; Msaada, K.; Merah, O.; Bourgou, S. Arbutus Unedo: Innovative Source of Antioxidant, Anti-Inflammatory and Anti-Tyrosinase Phenolics for Novel Cosmeceuticals. Cosmetics 2022, 9, 143. [Google Scholar] [CrossRef]
- Park, Y.; Shin, S.; Shukla, N.; Kim, K.; Park, M.-H. Effects of Nanobubbles in Dermal Delivery of Drugs and Cosmetics. Nanomaterials 2022, 12, 3286. [Google Scholar] [CrossRef]
- Mitropoulos, A.C.; Pappa, C.; Kosheleva, R.I.; Kyzas, G.Z. The Effect of Nanobubbles on Transdermal Applications. Nanomaterials 2023, 13, 2600. [Google Scholar] [CrossRef]
- Anastasiou, E.A.; Ayfantopoulou, E.; Lykartsi, E.E.; Papadopoulou, S.N.; Toganidou, I.T.; Tsiapali, O.I.; Tzourouni, A.; Veneti-kidou, M.G.; Tsoupras, A.B.; Koumentakou, I.; et al. Nanostructured Materials in Industrial Applications, Personal Care, and Health Care: A Cosmetic Approach. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2024; ISBN 978-0-12-803581-8. [Google Scholar]
- Kim, B.; Cho, H.-E.; Moon, S.H.; Ahn, H.-J.; Bae, S.; Cho, H.-D.; An, S. Transdermal Delivery Systems in Cosmetics. Biomed. Dermatol. 2020, 4, 10. [Google Scholar] [CrossRef]
- Sayre, R.M.; Agin, P.P.; LeVee, G.J.; Marlowe, E. A Comparison of In Vivo and In Vitro Testing of Sunscreening Formulas. Photochem. Photobiol. 1979, 29, 559–566. [Google Scholar] [CrossRef]
- Vordos, N.; Giannakopoulos, S.; Vansant, E.F.; Kalaitzis, C.; Nolan, J.W.; Bandekas, D.V.; Karavasilis, I.; Mitropoulos, A.C.; Touloupidis, S. Small-Angle X-Ray Scattering (SAXS) and Nitrogen Porosimetry (NP): Two Novel Techniques for the Evaluation of Urinary Stone Hardness. Int. Urol. Nephrol. 2018, 50, 1779–1785. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; Munguira, E.B.; Juan, C.A.; Lobo, F.; Pérez-Lebeña, E.; Pérez De La Lastra, J.M. In Silico Exploration of Natural Antioxidants for Sepsis Drug Discovery. Molecules 2025, 30, 2288. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Grimm, M.; Dai, W.; Hou, M.; Xiao, Z.-X.; Cao, Y. CB-Dock: A Web Server for Cavity Detection-Guided Protein–Ligand Blind Docking. Acta Pharmacol. Sin. 2020, 41, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for Antioxidant Assays for Food Components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef]
- Velderrain-Rodríguez, G.R.; Salvia-Trujillo, L.; González-Aguilar, G.A.; Martín-Belloso, O. Interfacial Activity of Phenolic-Rich Extracts from Avocado Fruit Waste: Influence on the Colloidal and Oxidative Stability of Emulsions and Nanoemulsions. Innov. Food Sci. Emerg. Technol. 2021, 69, 102665. [Google Scholar] [CrossRef]
- Butkevičiūtė, A.; Ramanauskienė, K.; Janulis, V. Release of Apple Extract and Phenolic Compounds from Five Semi-Solid Formulations. In Proceedings of the Scientific Collection «InterConf+»: Proceedings of the 3rd International Scientific and Practical Conference «Scientific Goals and Purposes in XXI Century», Seattle, WA, USA, 19–20 July 2022; Svoboda, A., Granko, M., Eds.; ProQuest LLC.; Scientific Publishing Center «InterConf»: Seattle, WA, USA, 2022. [Google Scholar]
- Gomes, S.M.; Miranda, R.; Santos, L. Sustainable Cosmetics: Valorisation of Kiwi (Actinidia Deliciosa) By-Products by Their Incorporation into a Moisturising Cream. Sustainability 2023, 15, 14059. [Google Scholar] [CrossRef]
- Parcheta, M.; Świsłocka, R.; Orzechowska, S.; Akimowicz, M.; Choińska, R.; Lewandowski, W. Recent Developments in Effective Antioxidants: The Structure and Antioxidant Properties. Materials 2021, 14, 1984. [Google Scholar] [CrossRef]
- Mordi, R.C.; Ademosun, O.T.; Ajanaku, C.O.; Olanrewaju, I.O.; Walton, J.C. Free Radical Mediated Oxidative Degradation of Carotenes and Xanthophylls. Molecules 2020, 25, 1038. [Google Scholar] [CrossRef]
- Adamantidi, T.; Lafara, M.-P.; Venetikidou, M.; Likartsi, E.; Toganidou, I.; Tsoupras, A. Utilization and Bio-Efficacy of Carotenoids, Vitamin A and Its Vitaminoids in Nutricosmetics, Cosmeceuticals, and Cosmetics’ Applications with Skin-Health Promoting Properties. Appl. Sci. 2025, 15, 1657. [Google Scholar] [CrossRef]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as Active Ingredients for Cosmetic Products. Intern. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef]
- Tarigan, C.; Pramastya, H.; Insanu, M.; Fidrianny, I. Syzygium Samarangense: Review of Phytochemical Compounds and Pharmacological Activities. Biointerface Res. Appl. Chem. 2021, 12, 2084–2107. [Google Scholar] [CrossRef]
- Fiorentino, A.; D’Abrosca, B.; Pacifico, S.; Mastellone, C.; Scognamiglio, M.; Monaco, P. Identification and Assessment of Antioxidant Capacity of Phytochemicals from Kiwi Fruits. J. Agric. Food Chem. 2009, 57, 4148–4155. [Google Scholar] [CrossRef]
- Quirin, K.W. Specialty Fatty Oils for Healthy Skin. Cosmet. Sci. Technol. 2009. [Google Scholar]
- Proestos, C.; Komaitis, M. Antioxidant Capacity of Hops. In Beer in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2009; pp. 467–474. ISBN 978-0-12-373891-2. [Google Scholar]
- Dewi, R.H.T.M.; Sholihah, N.; Nofitasari, R.; Adhityasmara, D.; Shabrina, A. The Potential of Avocado Oil for Topical Use: A Narrative Review. J. Ilmu Farm. Dan. Farm. Klin. 2024, 21, 106–114. [Google Scholar] [CrossRef]
- Shabrina, A.; Firdausi, Z.M.; Poerba, A.T.; Setyani, D.A.; Heroweti, J. Sunscreen Effectivity and Physical Characterization of Avocado Oil in Nanoemulsion Using Isopropyl Myristate Variations. Pharmaciana 2024, 14, 69. [Google Scholar] [CrossRef]
- Fares, M.M.; Radaydeh, S.K.; AlAmeen, H.M. Green Tannins /Avocado Oil Composites; Suncare and Skincare Materials. Arab. J. Chem. 2023, 16, 104764. [Google Scholar] [CrossRef]
- Opriş, O.; Lung, I.; Soran, M.-L.; Stegarescu, A.; Cesco, T.; Ghendov-Mosanu, A.; Podea, P.; Sturza, R. Efficient Extraction of Total Polyphenols from Apple and Investigation of Its SPF Properties. Molecules 2022, 27, 1679. [Google Scholar] [CrossRef]
- Abla, M.J.; Banga, A.K. Quantification of Skin Penetration of Antioxidants of Varying Lipophilicity. Int. J. Cosmet. Sci. 2013, 35, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Milutinov, J.; Pavlović, N.; Ćirin, D.; Atanacković Krstonošić, M.; Krstonošić, V. The Potential of Natural Compounds in UV Protection Products. Molecules 2024, 29, 5409. [Google Scholar] [CrossRef] [PubMed]
- Chrysikopoulou, V.; Rampaouni, A.; Koutsia, E.; Ofrydopoulou, A.; Mittas, N.; Tsoupras, A. Anti-Inflammatory, Antithrombotic and Antioxidant Efficacy and Synergy of a High-Dose Vitamin C Supplement Enriched with a Low Dose of Bioflavonoids; In Vitro Assessment and In Vivo Evaluation Through a Clinical Study in Healthy Subjects. Nutrients 2025, 17, 2643. [Google Scholar] [CrossRef] [PubMed]
- Sahu, R.P.; Rezania, S.; Ocana, J.A.; DaSilva-Arnold, S.C.; Bradish, J.R.; Richey, J.D.; Warren, S.J.; Rashid, B.; Travers, J.B.; Konger, R.L. Topical Application of a Platelet Activating Factor Receptor Agonist Suppresses Phorbol Ester-Induced Acute and Chronic Inflammation and Has Cancer Chemopreventive Activity in Mouse Skin. PLoS ONE 2014, 9, e111608. [Google Scholar] [CrossRef]
- Phoebe, L.K.W.; Lee, K.W.A.; Chan, L.K.W.; Hung, L.C.; Wu, R.; Wong, S.; Wan, J.; Yi, K. Use of Platelet Rich Plasma for Skin Rejuvenation. Ski. Res. Technol. 2024, 30, e13714. [Google Scholar] [CrossRef]
- Ishii, S.; Nagase, T.; Shimizu, T. Platelet-Activating Factor Receptor. Prostaglandins Other Lipid Mediat. 2002, 68–69, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Travers, J.B.; Rohan, J.G.; Sahu, R.P. New Insights Into the Pathologic Roles of the Platelet-Activating Factor System. Front. Endocrinol. 2021, 12, 624132. [Google Scholar] [CrossRef]
- Harishkumar, R.; Hans, S.; Stanton, J.E.; Grabrucker, A.M.; Lordan, R.; Zabetakis, I. Targeting the Platelet-Activating Factor Receptor (PAF-R): Antithrombotic and Anti-Atherosclerotic Nutrients. Nutrients 2022, 14, 4414. [Google Scholar] [CrossRef]
- Choi, B.Y. Biochemical Basis of Anti-Cancer-Effects of Phloretin—A Natural Dihydrochalcone. Molecules 2019, 24, 278. [Google Scholar] [CrossRef]
- Kiran, P.C.; Bulbule, S.R.; Hanumanthappa, R.; Nanjaiah, H.; Devaraju, K.S. Does Protein Kinases Exhibit Binding Affinity with Antipsychotic Drugs?—A Molecular Docking Approach. J. Appl. Bioinform. Comput. Biol. 2023, 12, 1–6. [Google Scholar]
- Chen, J.; Su, J.; Dong, L.; Bai, Z.; Liu, Y.; Bao, H.; Lu, Y.; Wu, Y. Rutin Ameliorates Cigarette Smoke Mediated Lung Inflammation in a Mouse Model of Chronic Obstructive Pulmonary Disease via Regulating the Levels of Tumor Necrosis Factor-α, Interleukin-8 and PAF. Arch. Med. Sci. 2020, 21, 258–265. [Google Scholar] [CrossRef]
- Ding, Y.; Li, C.; Zhang, Y.; Ma, P.; Zhao, T.; Che, D.; Cao, J.; Wang, J.; Liu, R.; Zhang, T.; et al. Quercetin as a Lyn Kinase Inhibitor Inhibits IgE-Mediated Allergic Conjunctivitis. Food Chem. Toxicol. 2020, 135, 110924. [Google Scholar] [CrossRef] [PubMed]
- Jafarinia, M.; Sadat Hosseini, M.; Kasiri, N.; Fazel, N.; Fathi, F.; Ganjalikhani Hakemi, M.; Eskandari, N. Quercetin with the Potential Effect on Allergic Diseases. Allergy Asthma Clin. Immunol. 2020, 16, 36. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, D.; Chaudhary, M.; Mandotra, S.K.; Tuli, H.S.; Chauhan, R.; Joshi, N.C.; Kaur, D.; Dufossé, L.; Chauhan, A. Anti-Inflammatory Potential of Quercetin: From Chemistry and Mechanistic Insight to Nanoformulations. Curr. Res. Pharmacol. Drug Discov. 2025, 8, 100217. [Google Scholar] [CrossRef] [PubMed]
- Aghababaei, F.; Hadidi, M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef] [PubMed]
- Nussinov, R.; Tsai, C.-J. The Different Ways through Which Specificity Works in Orthosteric and Allosteric Drugs. CPD 2012, 18, 1311–1316. [Google Scholar] [CrossRef]













| Ingredient | Function | Concentration (% w/w) |
|---|---|---|
| Deionized water | Solvent | 64.5 |
| Disodium EDTA | Chelating agent | 0.1 |
| Xanthan gum | Thickener | 0.4 |
| Glycerol | Humectant | 6.0 |
| Cetearyl alcohol | Emollient, stabilizer | 5.0 |
| Almond oil | Emollient, skin-conditioning | 5.0 |
| Wheat germ oil | Emollient, antioxidant | 5.0 |
| Cetearyl olivate and Sorbitan olivate | Emulsifier | 2.5 |
| Vitamin E | Antioxidant | 0.5 |
| Sodium hyaluronate | Humectant | 0.1 |
| Zinc oxide | UV filter | 10.0 |
| Phenoxyethanol and Caprylyl glycol | Preservatives | 0.9 |
| Avocado by-product extract * | Antioxidant | 0.0102 (10.2 mg) |
| Apple by-product extract * | Antioxidant | 0.052 (52 mg) |
| Kiwi by-product extract * | Antioxidant | 0.106 (106 mg) |
| Wavelength λ (nm) | EE (λ) × I (λ) * |
|---|---|
| 290 | 0.015 |
| 295 | 0.082 |
| 300 | 0.287 |
| 305 | 0.328 |
| 310 | 0.186 |
| 315 | 0.084 |
| 320 | 0.018 |
| Ligand | Structure | Fruit |
|---|---|---|
| Phloretin | ![]() | Apple [5] |
| Rutin | ![]() | Kiwi [7] |
| Quercetin | ![]() | Kiwi, Apple, and Avocado [3,5,7] |
| Day 0 | Average (μmol TE/g DW) | Standard Deviation (μmol TE/g DW) | Day 30 | Average (μmol TE/g DW) | Standard Deviation (μmol TE/g DW) |
|---|---|---|---|---|---|
| X | 41.2 | 24.2 | X | 34.0 | 11.4 |
| S | 28.9 | 21.6 | S | 34.9 | 18.4 |
| NB | 16.2 | 9.8 | NB | 24.9 | 11.5 |
| Day 0 | Average (μmol TE/g DW) | Standard Deviation (μmol TE/g DW) | Day 30 | Average (μmol TE/g DW) | Standard Deviation (μmol TE/g DW) |
|---|---|---|---|---|---|
| X | 202.8 | 145.6 | X | 449.8 | 43.9 |
| S | 710.4 | 344.3 | S | 631.7 | 277.8 |
| NB | 566.3 | 185.0 | NB | 1019.3 | 574.0 |
| Day 0 | Average (SPF) | Standard Deviation (SPF) | Day 30 | Average (SPF) | Standard Deviation (SPF) |
|---|---|---|---|---|---|
| X | 9.5 | 0.6 | X | 8.7 | 0.8 |
| S | 8.7 | 0.8 | S | 9.5 | 0.6 |
| NB | 9.5 | 1.0 | NB | 9.5 | 1.0 |
| Ligand | Score | Cavity Volume |
|---|---|---|
| Phloretin | −8.8 | 6073 |
| Rutin | −7.9 | 1136 |
| Quercetin | −9.0 | 6073 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiapali, O.I.; Kontaxi, N.-I.; Pavlidis, K.; Ofrydopoulou, A.; Prokopiou, V.; Letsiou, S.; Kosheleva, R.I.; Mitropoulos, A.; Tsoupras, A. Anti-Inflammatory and Antioxidant Properties of Anti-UV Creams Enriched with Natural Extracts from Avocado, Apple, and Kiwi By-Products, with and Without Nanobubbles. Cosmetics 2025, 12, 231. https://doi.org/10.3390/cosmetics12050231
Tsiapali OI, Kontaxi N-I, Pavlidis K, Ofrydopoulou A, Prokopiou V, Letsiou S, Kosheleva RI, Mitropoulos A, Tsoupras A. Anti-Inflammatory and Antioxidant Properties of Anti-UV Creams Enriched with Natural Extracts from Avocado, Apple, and Kiwi By-Products, with and Without Nanobubbles. Cosmetics. 2025; 12(5):231. https://doi.org/10.3390/cosmetics12050231
Chicago/Turabian StyleTsiapali, Olga I., Nefeli-Ioanna Kontaxi, Konstantinos Pavlidis, Anna Ofrydopoulou, Vasileios Prokopiou, Sophia Letsiou, Ramonna I. Kosheleva, Athanassios Mitropoulos, and Alexandros Tsoupras. 2025. "Anti-Inflammatory and Antioxidant Properties of Anti-UV Creams Enriched with Natural Extracts from Avocado, Apple, and Kiwi By-Products, with and Without Nanobubbles" Cosmetics 12, no. 5: 231. https://doi.org/10.3390/cosmetics12050231
APA StyleTsiapali, O. I., Kontaxi, N.-I., Pavlidis, K., Ofrydopoulou, A., Prokopiou, V., Letsiou, S., Kosheleva, R. I., Mitropoulos, A., & Tsoupras, A. (2025). Anti-Inflammatory and Antioxidant Properties of Anti-UV Creams Enriched with Natural Extracts from Avocado, Apple, and Kiwi By-Products, with and Without Nanobubbles. Cosmetics, 12(5), 231. https://doi.org/10.3390/cosmetics12050231




